freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

用放縮法證明與數(shù)列和有關(guān)的不等式-資料下載頁

2025-10-18 22:27本頁面
  

【正文】 點(diǎn)f(x)=ln(1+x)x163。f(0)=0222。ln(1+x)163。x,當(dāng)x=0時(shí)取到等號.(2)法1:數(shù)學(xué)歸納法(先猜想,再證明)法2:由ln2+lnan+1=an+1an+f(an+1an)得2an+1=an+1an+1,an+1=12an,an+11=12an1=an12an,1an+11=1an11,即數(shù)列237。236。252。1=2,公差為1,是等差數(shù)列,首項(xiàng)為253。a11238。an1254。nn+1∴an1=n1222。an=.(3)法1:a1+a2+L+an=111+1+112+1+L+111246。230。1=n231。++L+247。23n+1n+1232。248。又∵x0時(shí),有xln(1+x),令x=1n+1230。1232。20,則1246。n+2230。ln231。1+=ln 247。n+1n+1248。n+1232。1∴n231。+3+L+345n+1n+2246。246。230。nln+ln+ln+L+ln+ln247。231。247。 n+1248。234nn+1232。248。n+2246。n+2=nl=n+247。n+1248。2=n231。ln180。232。230。343180。L180。ln2n) (nl+∴a1+a2+L+ann+ln2ln(n+2) . 法2:積分法要證原命題,即證:231。230。1232。2246。247。ln(n+2)ln2 n+1248。1++L+11246。230。1++L+231。247。3n+1248。232。2230。1232。2n+2242。1xdx=lnxn+22法3:數(shù)歸證明:、(1)求證:2n++L+246。247。ln(n+2)ln2 n+1248。+2n+1(n2,n206。N)nn1n01法1:2=Cn+Cn+...+Cn+Cn;法2:數(shù)學(xué)歸納法 法3:函數(shù)法(求導(dǎo)),證明:()+()+…+(nn*nnn1n)+(nnn)nee1提示:借助e179。1+x證明x第四篇:放縮法與數(shù)列不等式的證明2017高三復(fù)習(xí)靈中黃老師的專題放縮法證明數(shù)列不等式編號:001 引子:放縮法證明數(shù)列不等式歷來是高中數(shù)學(xué)的難點(diǎn),在高考數(shù)列試題中經(jīng)常扮演壓軸的角色。由于放縮法靈活多變,技巧性要求較高,所謂“放大一點(diǎn)點(diǎn)太大,縮小一點(diǎn)點(diǎn)太小”。為了揭開放縮法的神秘面紗,黃老師特開設(shè)這一專題,帶領(lǐng)大家走近“放縮法”。一.放縮法證明不等式的理論依據(jù): 1.不等式的傳遞性:2.同向不等式的可加性:3.同向的正數(shù)不等式的可乘性:二.常見的數(shù)列求和的方法及公式特點(diǎn): 1.等差數(shù)列的和。an=_____sn=______(n206。N*)2.等比數(shù)列的和:an=kqn,sn=3.錯(cuò)位相減法:等差等比4.裂項(xiàng)相消法:若anan1=d(d為常數(shù)):1.放縮目標(biāo)模型:可求和 1.1等差模型1111=()(n206。N*)anan1dan1ana1(1qn)(q185。1)(n206。N*)1qn(n+1)n(n+2)p12+23+...+n(n+1)p例1.(1985全國卷)求證:(n206。N*)22n(n+1)n(n+3)p12+23+...+n(n+1)p變式:(n206。N*)22:+2+3+....+n1(n206。N*)2222:1+12+1+11223+1+......+2n+11(n206。N*2+1)例3.(2014全國卷Ⅱ1{an}滿足a1=1,an+1=3an+1,1)證明:236。237。238。a1252。n+{an}的通項(xiàng)公式 2)證明:1a+113a+.......+12an2變式:求證:121+121+1152231+......+2n13(n206。N*)例4.(2002全國卷理22題7題)第2問已知數(shù)已知數(shù)列列((){an}滿足an+1=an2nan+1,n=1,2,3.......當(dāng)a1179。3時(shí),證明對所有的n179。1,n206。N*(1)an179。n+2(2)證明:1a1+1a+.......+111+2+1an+12:12+1+23n22+2+23+3+.......+2n+n2(n206。N*)例2(2013廣東文19第(3)問)求證:11180。3+13180。5+15180。7+L+11(2n1)(2n+1)2:n12n+122+32+......+n2n(n206。N*)(n206。N*):1+2+2+......+22(n206。N*)::::23n 1+111722+32+......+n24(n206。N*)1+12+115232+......+n24(n206。N*)+12+13+......+1n2n(n206。N*)+11132+52+......+(2n1)2321115:1+2+2+......+235(2n1)4常見的放縮技巧總結(jié):第五篇:用放縮法證明不等式用放縮法證明不等式蔣文利飛翔的青蛙所謂放縮法就是利用不等式的傳遞性,對照證題目標(biāo)進(jìn)行合情合理的放大和縮小的過程,在使用放縮法證題時(shí)要注意放和縮的“度”,否則就不能同向傳遞了,此法既可以單獨(dú)用來證明不等式,也可以是其他方法證題時(shí)的一個(gè)重要步驟。下面舉例談?wù)勥\(yùn)用放縮法證題的常見題型。一.“添舍”放縮通過對不等式的一邊進(jìn)行添項(xiàng)或減項(xiàng)以達(dá)到解題目的,這是常規(guī)思路。,b為不相等的兩正數(shù),且a3-b3=a2-b2,求證1<a+b<4。3證明:由題設(shè)得a2+ab+b2=a+b,于是(a+b)2>a2+ab+b2=a+b,又a+b>0,得a+b>1,又ab<(a+b),而(a+b)=a+b+ab<a+b++b)2<a+b,所以a+b<、b、c不全為零,求證:a2+ab+b2+b2+bc+c2+c2+ac+a2>3(a+b+c)21422132(a+b),即(a4444,故有1<a+b<。33證明:因?yàn)閍2+ab+b2=同理b2+bc+c2>b+c,2(a+b23)+b2>42(a+b2)2=a+bb≥a+,22c2+ac+a2>c+a。23(a+b+c)2所以a2+ab+b2+ b2+bc+c2+c2+ac+a2>一個(gè)分式若分子變大則分式值變大,若分母變大則分式值變小,一個(gè)真分式,分子、分母同時(shí)加上同一個(gè)正數(shù)則分式值變大,利用這些性質(zhì),可達(dá)到證題目的。、b、c為三角形的三邊,求證:1<abc++<2。b+ca+ca+b證明:由于a、b、c為正數(shù),所以baab>>,b+ca+b+ca+ca+b+ccc>a+ba+b+c,所以abcabc++>++=1,又a,b,c為三角形的b+ca+ca+b+ca+b+ca+b+ca+b邊,故b+c>a,則c2c,<a+ba+b+ca2a2b為真分?jǐn)?shù),則a<,同理b<,b+ca+b+ca+ca+b+cb+c故abc2a2b2c++<++=+ca+ca+b+ca+b+ca+b+ca+babc++<2。b+ca+ca+b綜合得1<若欲證不等式含有與自然數(shù)n有關(guān)的n項(xiàng)和,可采用數(shù)列中裂項(xiàng)求和等方法來解題?!蔔*,求1+1n?+1n2n+n++?+1n<2n。證明:因?yàn)?<n+n13=2(nn1),則1+++<1+2(21)+2(2)+?+2(nn1)=2n1<2n,證畢。例n(n+1)25.an已知(n+1)2n206。N*且an=180。2+2180。3+L+n(n+1),求證:對所有正整數(shù)n都成立。n證明:因?yàn)閚(n+1)又n(n+1)1+22=n,所以an1+2+L+n=n(n+1),n(n+1)+2+32,n(n+1)2n+12(n+1)所以an立。+L+=++L+=,利用已知的公式或恒不等式,把欲證不等式變形后再放縮,可獲簡解。(x)=證明:由題意知f(n)nn+1=212+1nn212+1xx,證明:對于n206。N*且n179。3都有f(n)nn+1。nn+1=(122+1n)(11n+1)=1n+122+1n=2(2n+1)(n+1)(2+1)nn又因?yàn)閚206。N*且n179。3,所以只須證2n2n+1,又因?yàn)?,n=(1+1)n=Cn+Cn+Cn+L+Cnn1+Cnn=1+n+n(n1)+L+n+12n+1所以f(n)nn+1。(x)=+x2,求證:當(dāng)a185。b時(shí)f(a)f(b)ab。證f(a)f(b)=1+a2+b2=明a2b2+a:++b=a+bab+ab2+1+a+baba+b(a+b)aba+b=ab證畢。對于不等式的某個(gè)部分進(jìn)行換元,可顯露問題的本質(zhì),然后隨機(jī)進(jìn)行放縮,可達(dá)解題目的。bc,求證1ab+1bc+1ca0。證明:因?yàn)閍bc,所以可設(shè)a=c+t,b=c+u(tu0),所以tu0則1ab+1bc+1ca=1tu+1u1t1u1t=tutu0,即1ab+1bc+1ca0。,b,c為△ABC的三條邊,且有a2+b2=c2,當(dāng)n206。N*且n179。3時(shí),求證:an+bn。證明:由于a2+b2=c2,可設(shè)a=csina,b=ccosa(a為銳角),因?yàn)?sina1,0cosa1,則當(dāng)n179。3時(shí),sinnasin2a,cosnacos2a,所以an+bn=(sinna+cosna)(sin2a+cos2a)=。根據(jù)題目特征,通過構(gòu)造特殊的單調(diào)函數(shù),利用其單調(diào)性質(zhì)進(jìn)行放縮求解。,b∈R,求證x1+xa+b1+a+b163。a1+a+b1+b。證明:構(gòu)造函數(shù)f(x)=f(x1)f(x2)=x11+x1(x179。0),首先判斷其單調(diào)性,設(shè)0163。x1x2,因?yàn)閤21+x2=x1x2(1+x1)(1+x2)0,所以f(x1)f(x2),所以f(x)在[0,+165。]上是增函數(shù),取x1=a+b,x2=a+b,顯然滿足0163。x1163。x2,所以f(a+b)163。f(|a|+|b|),即|a+b|1+|a+b|163。|a|+|b|1+|a|+|b|=|a|1+|a|+|b|+|b|1+|a|+|b|163。|a|1+|a|+|b|1+|b|。證畢。
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1