【總結(jié)】公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????
2025-07-26 06:15
【總結(jié)】數(shù)學(xué)廣角──排列組合(一)南昌師范附屬實(shí)驗(yàn)小學(xué)張珂教材分析:“數(shù)學(xué)廣角”是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)從二年級(jí)上冊(cè)開(kāi)始新增設(shè)的一個(gè)單元,是新教材在向?qū)W生滲透數(shù)學(xué)思想方法方面做出的新的嘗試。排列和組合的思想方法不僅應(yīng)用廣泛,而且是學(xué)生學(xué)習(xí)概率統(tǒng)計(jì)的知識(shí)基礎(chǔ),同時(shí)也是發(fā)展學(xué)生抽象能力和邏輯思維能力的好素材,本教材在滲透數(shù)學(xué)思想方法方面做了一些努力和探索,
2024-12-09 07:54
【總結(jié)】組合(2)2022/8/302④要明確堆的順序時(shí),必須先分堆后再把堆數(shù)當(dāng)作元素個(gè)數(shù)作全排列.②若干個(gè)不同的元素局部“等分”有m個(gè)均等堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!①若干個(gè)不同的元素“等分”為m個(gè)堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!③非均分堆問(wèn)題,只要按比例取出分完再用乘法原理作積
2025-08-05 16:59
【總結(jié)】排列組合復(fù)習(xí)計(jì)數(shù)的基本原理排列組合排列數(shù)Anm公式組合數(shù)Cnm公式組合數(shù)的兩個(gè)性質(zhì)應(yīng)用本章知識(shí)結(jié)構(gòu)分類(lèi)計(jì)數(shù)原理完成一件事,有n類(lèi)辦法,在第1類(lèi)辦法中,有m1種不同的方法,在第2類(lèi)辦法中,有m2種不同的方法……在第n類(lèi)辦法中,
2024-11-11 05:50
【總結(jié)】引例問(wèn)題1從甲、乙、丙3名同學(xué)中選出2名參加某天的一項(xiàng)活動(dòng),其中1名同學(xué)參加上午的活動(dòng),1名同學(xué)參加下午的活動(dòng),有多少種不同的方法?第1步,確定參加上午活動(dòng)的同學(xué),從3人中任選1人有3種方法;第2步,確定參加下午活動(dòng)的同學(xué),只能從余下的2人中選,有2種方法.
2024-11-11 09:01
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】§排列、組合及其應(yīng)用要點(diǎn)梳理(1)排列的定義:從n個(gè)的元素中取出m(m≤n)個(gè)元素,按照一定的排成一列,叫做從n個(gè)不同的元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)的定義:從n個(gè)不同的元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù)叫做從
2025-08-05 19:06
【總結(jié)】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識(shí)結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問(wèn)題一、知識(shí)結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個(gè)基本原理
2024-11-18 00:34
【總結(jié)】排列組合專(zhuān)題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:應(yīng)用題;排列組合.分析:分類(lèi)討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專(zhuān)題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛(ài)敏高考目標(biāo)掌握排列、組合問(wèn)題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力??.二、過(guò)程與方法通過(guò)問(wèn)題的探究,體會(huì)知識(shí)的類(lèi)比遷移。以
2025-08-05 06:55
【總結(jié)】一,映射與排列組合問(wèn)題變式:同(2)257對(duì)集合A中元素進(jìn)行分類(lèi)。二,排列組合中的映射思維通過(guò)集合A與另一個(gè)集合B之間的映射關(guān)系,將對(duì)集合A中元素的計(jì)數(shù)問(wèn)題轉(zhuǎn)化為對(duì)集合B的計(jì)數(shù)。且A與B是一一對(duì)應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結(jié)】例“歡樂(lè)今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來(lái)信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結(jié)】排列、組合的應(yīng)用問(wèn)題高考要求:,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。,掌握排列數(shù)公式。,掌握組合數(shù)計(jì)算公式及組合數(shù)的性質(zhì)。3名男生,4名女生,在下列不同要求下求不同的排列方法總數(shù).(1)甲不在排頭,乙不在排尾.(2)男、女生各不相鄰.(3)甲站中間,乙、丙必須相鄰。(4)甲與乙、丙二人
2024-11-09 03:17
【總結(jié)】排列組合的綜合應(yīng)用例1將4個(gè)不同的小球放入4個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個(gè)盒子里放2個(gè)球;(2)恰有兩個(gè)盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評(píng)例
2024-11-09 08:09