【導(dǎo)讀】系,抓住“順序”這個(gè)關(guān)鍵。問題,還是排列與組合的綜合問題。解決比較復(fù)雜的排列組合問題時(shí),往往需要既分類又分步。重不漏;正確分步,連續(xù)完整。選學(xué)其中的一門,有幾種選法?不相鄰,有多少種排法?一臺(tái),其中學(xué)生甲必須用1號(hào)電腦,字小于十位數(shù)字的共有多少個(gè)?生,不同的分配方法有多少種?方法,體會(huì)解題思路.
【總結(jié)】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有
2025-08-05 07:03
【總結(jié)】排列、組合與概率的復(fù)習(xí)知識(shí)目標(biāo):1.排列組合問題的常見處理方法總結(jié)2.概率問題的常見處理方法總結(jié)能力要求:數(shù)學(xué)思想:逐步培養(yǎng)學(xué)生養(yǎng)成運(yùn)用分類與分步、對(duì)立事件等數(shù)學(xué)思想方法思考問題、解決問題的習(xí)慣通過常見問題處理方法的總結(jié),使學(xué)生能夠熟練處理排列、組合與概率的常規(guī)問題一、排列、組合常見問題的處理方法回顧:
2024-11-09 22:48
【總結(jié)】排列、組合復(fù)習(xí)課一、基本內(nèi)容1、兩個(gè)原理:①分類計(jì)數(shù)加法原理(加法原理):完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法……在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+…..+mn種不同的方法.②分步計(jì)數(shù)乘法原理(乘法原理):完成一件事
2024-11-09 04:21
【總結(jié)】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識(shí)1:知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2024-11-11 02:53
【總結(jié)】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-16 02:06
【總結(jié)】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個(gè)數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個(gè)數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】排列組合應(yīng)用題解法綜述計(jì)數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯(cuò)誤較難自檢發(fā)現(xiàn)。因而對(duì)這類問題歸納總結(jié),并把握一些常見解題模型是必要的。基本原理組合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【總結(jié)】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問題。和應(yīng)用問題。問題:解決排列組合問題一般有哪些方法?應(yīng)注意什么問題?解排列組合問題時(shí),當(dāng)問題分成互斥各類時(shí),根據(jù)加法原理,可用分類法;當(dāng)問題考慮先后次序時(shí),根據(jù)乘法原
2025-08-07 14:47
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡單計(jì)數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】數(shù)學(xué)廣角之排列組合主講田村中心小學(xué)劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每兩個(gè)人進(jìn)行一場比賽,一共要比幾場?買一個(gè)拼音本,可以怎樣付錢?
2024-12-13 17:38
【總結(jié)】第六節(jié)排列與組合(理)重點(diǎn)難點(diǎn)重點(diǎn):1.兩個(gè)計(jì)數(shù)原理的理解和應(yīng)用.2.排列與組合的定義、計(jì)算公式,組合數(shù)的兩個(gè)性質(zhì).難點(diǎn):1.如何區(qū)分實(shí)際問題中的“類”與“步”.2.組合數(shù)的性質(zhì)和有限制條件的排列組合問題.知識(shí)歸納1.分類計(jì)數(shù)原理完成一件事,
2025-08-07 11:23
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛敏高考目標(biāo)掌握排列、組合問題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會(huì)知識(shí)的類比遷移。以
2025-08-05 06:55
【總結(jié)】排列組合練習(xí)題用2,6,8三個(gè)數(shù)能組成哪幾個(gè)不同的兩位數(shù)?用0,3,9三個(gè)數(shù)能組成哪幾個(gè)不同的兩位數(shù)?用1,4,7能組成哪幾個(gè)不同的三位數(shù)?用3,6,9能組成哪幾個(gè)不同的三位數(shù)?排列組合練習(xí)題由3,5,0,6共四張卡片,你能擺出最大的兩位數(shù)和最小的兩位數(shù)嗎?它們的和是(),差是().有4,6,8
2025-08-05 08:17
【總結(jié)】組合(2)2022/8/302④要明確堆的順序時(shí),必須先分堆后再把堆數(shù)當(dāng)作元素個(gè)數(shù)作全排列.②若干個(gè)不同的元素局部“等分”有m個(gè)均等堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!①若干個(gè)不同的元素“等分”為m個(gè)堆,要將選取出每一個(gè)堆的組合數(shù)的乘積除以m!③非均分堆問題,只要按比例取出分完再用乘法原理作積
2025-08-05 16:59