【摘要】一、學(xué)習(xí)內(nèi)容1、分類計數(shù)原理與分步計數(shù)原理2、排列3、組合4、二項式定理5、隨機事件的概率6、互斥事件有一個發(fā)生的概率7、相互獨立事件同時發(fā)生的概率二、學(xué)習(xí)要求1、掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些應(yīng)用問題。2、理解排列與組合的意義,掌握排列數(shù)和組合數(shù)的計算公式,掌握組合數(shù)的兩個性
2024-11-09 01:15
【摘要】平潭城關(guān)中學(xué):劉小飛第九章排列、組合、二項式定理知識結(jié)構(gòu)網(wǎng)絡(luò)圖:排列與組合二項式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個性質(zhì)二項式定理二項式系數(shù)的性質(zhì)基礎(chǔ)練習(xí)名稱內(nèi)容加法原理乘法原理定義相同點
2024-11-09 06:20
【摘要】1、基本概念和考點2、合理分類和準(zhǔn)確分步3、特殊元素和特殊位置問題4、相鄰相間問題5、定序問題6、分房問題7、環(huán)排、多排問題12、小集團問題10、先選后排問題9、平均分組問題11、構(gòu)造模型策略8、實驗法(枚舉法)13、其它特殊方法排列組合應(yīng)用題解法綜述(目錄)名稱內(nèi)容
2025-08-16 01:49
【摘要】問題1把abcd平均分成兩組有_____多少種分法?結(jié)論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個在分組時只能算一個mmA均分不安排工作的問題例1:12本不
2025-08-05 07:24
【摘要】排列、組合、二項式定理知識結(jié)構(gòu)網(wǎng)絡(luò)圖:排列與組合二項式定理基本原理排列組合排列數(shù)公式組合數(shù)公式組合數(shù)的兩個性質(zhì)二項式定理二項式系數(shù)的性質(zhì)基礎(chǔ)練習(xí)名稱內(nèi)容加法原理乘法原理定義相同點不同點兩個原理的區(qū)別與聯(lián)系
2024-11-09 08:09
【摘要】排列組合應(yīng)用題解法綜述(目錄)基本概念和考點合理分類和準(zhǔn)確分步特殊元素和特殊位置問題相鄰相間問題定序問題分房問題環(huán)排、多排問題小集團問題先選后排問題平均分組問題構(gòu)造模型策略實驗法(枚舉法)其它特殊方法排列組合應(yīng)用題解法綜述計數(shù)問題中排列組合問題是最常見的,由于
2025-08-15 23:21
【摘要】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個元素必須排在一起的問題,可以用捆綁法來解決問題。即將需要相鄰的元素合并為一個元素,再與其他元素一起作排列,同時要注意合并元素內(nèi)部也可以做排列。一般地:n個人站成一排,其中某m個人相鄰,可用“捆綁法”解決,共有種排法插入法:對
2024-11-09 13:22
【摘要】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【摘要】高中數(shù)學(xué)排列組合易錯題分析排列組合問題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個基本原理出錯排列組合問題基于兩個基本計數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.例1(1995年上海高考題)從6臺原裝計算機和5臺組裝計算機中任意選取5臺,其中至少有原裝與組裝計算機各兩臺,則不同的取法有種.誤解:因為可
2025-03-25 02:36
【摘要】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計數(shù)原理,對各個區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24
【摘要】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個基本原理是排列、組合的開頭課,學(xué)習(xí)它所需的先行知識跟學(xué)生已熟知的數(shù)學(xué)知識聯(lián)系很少,排列、組合的計算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會準(zhǔn)確地應(yīng)用兩個基本原理分析和解決一些簡單的問題對于學(xué)生陌生的知識,在開頭課中首先作一個大概的介紹,使學(xué)生有一個
2025-06-17 05:28
【摘要】排列組合測試卷1.7個人站一隊,其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個人分乘兩輛不
2025-08-05 07:38