【總結(jié)】從n個(gè)元素中抽取m(m≦n)個(gè)元素的排列,可以看作先從n個(gè)元素中抽取m個(gè)進(jìn)行組合,再對(duì)m個(gè)元素進(jìn)行全排列.)!(!!!)1()2)(1(mnmnmmnnnnAACmmmnmn?????????高中部11個(gè)班進(jìn)行籃球單循環(huán)比賽,需要進(jìn)行多少場(chǎng)比賽?從全
2025-11-09 08:07
【總結(jié)】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題基礎(chǔ)知識(shí)1:知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2025-11-02 02:53
2025-11-10 08:50
【總結(jié)】數(shù)學(xué)廣角之排列組合主講田村中心小學(xué)劉勝門票5元可以怎樣付錢?門票5元門票5元門票5元門票5元門票5元有幾種穿法?1234每?jī)蓚€(gè)人進(jìn)行一場(chǎng)比賽,一共要比幾場(chǎng)?買一個(gè)拼音本,可以怎樣付錢?
2025-12-04 17:38
【總結(jié)】高考數(shù)學(xué)輕松搞定排列組合難題二十一種方法排列組合問題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚?。教學(xué)目標(biāo)。;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類辦
2025-08-05 16:59
【總結(jié)】排列組合及二項(xiàng)式定理【基本知識(shí)點(diǎn)】2.排列的概念:從個(gè)不同元素中,任?。ǎ﹤€(gè)元素(這里的被取元素各不相同)按照一定的順序排成一列,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)排列3.排列數(shù)的定義:從個(gè)不同元素中,任取()個(gè)元素的所有排列的個(gè)數(shù)叫做從個(gè)元素中取出元素的排列數(shù),用符號(hào)表示4.排列數(shù)公式:():表示正整數(shù)1到的連乘積,叫做的階乘規(guī)定.6.排列數(shù)的另一個(gè)計(jì)算公式:=
2025-04-04 05:05
【總結(jié)】1.2排列與組合1.排列第1課時(shí)排列與排列數(shù)公式1.了解排列、排列數(shù)的定義;掌握排列數(shù)公式及推導(dǎo)方法.2.能用“樹形圖”寫出一個(gè)排列問題的所有的排列,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算.3.通過實(shí)例分析過程體驗(yàn)數(shù)學(xué)知識(shí)的形成和發(fā)展,總結(jié)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)習(xí)興趣.1.排列(1)一般地,從
2025-08-16 00:20
【總結(jié)】.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結(jié)】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識(shí)結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題一、知識(shí)結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個(gè)基本原理
2025-11-09 00:34
【總結(jié)】一,映射與排列組合問題變式:同(2)257對(duì)集合A中元素進(jìn)行分類。二,排列組合中的映射思維通過集合A與另一個(gè)集合B之間的映射關(guān)系,將對(duì)集合A中元素的計(jì)數(shù)問題轉(zhuǎn)化為對(duì)集合B的計(jì)數(shù)。且A與B是一一對(duì)應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2025-11-01 03:08
【總結(jié)】例“歡樂今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2025-10-31 06:20
【總結(jié)】排列組合復(fù)習(xí)計(jì)數(shù)的基本原理排列組合排列數(shù)Anm公式組合數(shù)Cnm公式組合數(shù)的兩個(gè)性質(zhì)應(yīng)用本章知識(shí)結(jié)構(gòu)分類計(jì)數(shù)原理完成一件事,有n類辦法,在第1類辦法中,有m1種不同的方法,在第2類辦法中,有m2種不同的方法……在第n類辦法中,
2025-11-02 05:50
【總結(jié)】引例問題1從甲、乙、丙3名同學(xué)中選出2名參加某天的一項(xiàng)活動(dòng),其中1名同學(xué)參加上午的活動(dòng),1名同學(xué)參加下午的活動(dòng),有多少種不同的方法?第1步,確定參加上午活動(dòng)的同學(xué),從3人中任選1人有3種方法;第2步,確定參加下午活動(dòng)的同學(xué),只能從余下的2人中選,有2種方法.
2025-11-02 09:01
【總結(jié)】排列、組合的應(yīng)用問題高考要求:,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問題。,掌握排列數(shù)公式。,掌握組合數(shù)計(jì)算公式及組合數(shù)的性質(zhì)。3名男生,4名女生,在下列不同要求下求不同的排列方法總數(shù).(1)甲不在排頭,乙不在排尾.(2)男、女生各不相鄰.(3)甲站中間,乙、丙必須相鄰。(4)甲與乙、丙二人
2025-10-31 03:17