【導(dǎo)讀】[解析]∵z=|z|,∴z為實(shí)數(shù)且z≥0.[解析]依題意可得m-2+m-2=2,解得m=1或3,故選A.[解析]由題意知a2-2a=0,[解析]由于OABC是平行四邊形,故AB→=OC→,因此|AB→|=|OC→|=|3-2i|=13,故選D.[解析]由條件知,(x-1)2+2<10,∴5x2-6x-8<0,∴-45<x<2.8.已知復(fù)數(shù)z=k2-3k+i(k∈R),且z<0,則|z|=______________.9.若復(fù)數(shù)z=+i是純虛數(shù),其中m∈R,則|z|=________.[解析]∵z=+i,即實(shí)數(shù)m的取值范圍是m<-1-52或m>32.+cosα2+sin2α=2+2cosα=4cos2α2,13.若A、B是銳角△ABC的兩內(nèi)角,則復(fù)數(shù)z=+i在復(fù)平。又在,正弦函數(shù)單調(diào)遞增,同理可得sinB>sin,14.設(shè)復(fù)平面內(nèi)點(diǎn)A、B對(duì)應(yīng)復(fù)數(shù)分別為1+i,2-i,O為坐標(biāo)原點(diǎn),向量OC→=AB→,[解析]由復(fù)數(shù)的幾何意義可知,[解析]解法一:|z|=|3+4i|得|z|=5.