【導讀】虛部其中稱為虛數(shù)單位。形如a+bi的數(shù)叫做復數(shù).復習復數(shù)的定義是什么?已知關于的方程有實根。求這個實根以及實數(shù)的值。在學案網(wǎng)格上做出復數(shù)所對應的點和向量。上將構成怎樣的圖形?設求滿足下列條件的點的集合是什么圖形?4實部和虛部相等。在復平面內所對應的點位于第一象限,
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 08:47
【總結】復數(shù)與平行四邊形家族菱形、矩形、正方形等特殊的平面幾何圖形與某些復數(shù)式之間存在某種聯(lián)系及相互轉化的途徑.在求解復數(shù)問題時,若能善于觀察條件中給定的或者是通過推理所得的復數(shù)形式的結構特征,往往能獲得簡捷明快的解決方法.下面列舉幾例,以供參考.一、復數(shù)式與矩形的轉化例1已知復數(shù)12zz,滿足171z??,271z??,且1
2024-11-20 00:26
【總結】復數(shù)的幾何意義課時目標、向量的對應關系.復數(shù)加減法的幾何意義及應用..1.復平面的定義建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做________,y軸叫做________,實軸上的點都表示實數(shù),除________外,虛軸上的點都表示純虛數(shù).2.復數(shù)與點、向量間的對應在復平面內,復數(shù)z=a+b
2024-12-05 09:31
【總結】2020/12/24復數(shù)的乘法2020/12/24一、復數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復數(shù)的積仍是一個復數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1
2024-11-17 15:11
【總結】雙基達標?限時20分鐘?1.函數(shù)y=f(x)在x=x0處的導數(shù)f′(x0)的幾何意義是().A.在點x0處的斜率B.在點(x0,f(x0))處切線與x軸所夾銳角的正切值C.曲線y=f(x)在點(x0,f(x0))處切線的斜率D.點(x0,f(x0))與點(0,0)連線的斜率解析由導
2024-12-03 00:14
【總結】導數(shù)的幾何意義 一、選擇題 1.設函數(shù)可導,則() A.B.C.D.不能確定 2.(2007年浙江卷)設是函數(shù)的導函數(shù),將和的圖象畫在同一個直角坐標系中,不可能正確的是() y x ...
2025-03-15 03:52
【總結】導數(shù)的幾何意義一、基礎過關1.下列說法正確的是()A.若f′(x0)不存在,則曲線y=f(x)在點(x0,f(x0))處就沒有切線B.若曲線y=f(x)在點(x0,f(x0))處有切線,則f′(x0)必存在C.若f′(x0)不存在,則曲線y=f(x)在點(x0,
2024-12-03 11:30
【總結】2020/12/24復數(shù)的除法2020/12/24復數(shù)除法的法則復數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復數(shù)x+yi,叫做復數(shù)a+bi除以復數(shù)c+di的商,記作.a+bic+di2020/12/24a+bic+
2024-11-17 12:09
【總結】導數(shù)及其應用第一章導數(shù)第3課時導數(shù)的幾何意義第一章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習下雨天,當我們將雨傘轉動時,傘面邊沿的水滴沿著傘的切線方向飛出.實際上物體(看作質點)做曲線運動時,運動方向在不停地變化,其速度方向為質點在其軌跡曲線上的切線方
2024-11-17 20:06
【總結】導數(shù)的幾何意義 第1題.2007海南、寧夏文)設函數(shù) (Ⅰ)討論的單調性; (Ⅱ)求在區(qū)間的最大值和最小值. 答案:解:的定義域為. (Ⅰ). 當時,;當時,;當時,. 從而,分別在區(qū)間...
2025-03-09 22:26
【總結】導數(shù)的幾何意義 一、選擇題(本大題共16小題,每小題5分,共80分。在每小題給出的四個選項中,只有一項是符合題目要求的。) 1.已知函數(shù)f(x)=ax2+c,且=2,則a的值為() B.C...
【總結】導數(shù)的幾何意義 得分 一、選擇題(共12小題,每小題5分,共60分) y=x2cosx的導數(shù)為…………………………………………………………………【】 A.y′=2xcosx-x2sinx ...
2025-03-15 03:25
【總結】高二數(shù)學學案編號19班級姓名復數(shù)的乘法一、【學習目標】理解復數(shù)乘法的運算法則,了解乘方的規(guī)則,掌握一些常見結果?!局攸c、難點】乘方的對比學習、常見結果的理解與運用。二、【教學過程】(一)復習回顧
2024-12-08 16:21
【總結】一、問題引入的幾何意義是什么呢?導數(shù)附近的變化情況,那么在了函數(shù)處的瞬時變化率,反映在表示函數(shù)導數(shù)我們知道,)(')()()('0000xfxxxfxxxfxf??二、新知探究如圖,當點Pn(xn,f(xn))(n=1,2,3,4)沿著曲線f(x)趨近于點P(x0,
2025-03-12 14:54
【總結】§導數(shù)的幾何意義教學目標:1.了解平均變化率與割線斜率之間的關系;2.理解曲線的切線的概念;3.通過函數(shù)的圖像直觀地理解導數(shù)的幾何意義,并會用導數(shù)的幾何意義解題;教學重點:曲線的切線的概念、切線的斜率、導數(shù)的幾何意義;教學難點:導數(shù)的幾何意義.教學過程:新課講授(一)曲線的切線及切線的斜率
2024-12-05 06:42