【導(dǎo)讀】余弦的積的______.即a2=________________,b2=________________,c2=。cosA=______________;cosB=______________;cosC=______________.若a2+b2-c2=0,則C=________;4.在△ABC中,已知a=2,則bcosC+ccosB=____________.7.在△ABC中,sin2A2=c-b2c,則△ABC的形狀。10.在△ABC中,BC=1,B=π3,當(dāng)△ABC的面積等于3時,tanC=________.12.在△ABC中,BC=a,AC=b,且a,b是方程x2-23x+2=0的兩根,2cos(A+B). 解析c2=a2+b2-2abcosC=22+42-2³2³4³cos60°=12,由正弦定理:asinA=csinC得sinA=12.∵a<c,∴A<60°,A=30°.解析∵b2=ac,c=2a,∴b2=2a2,b=2a,解析∵S=14=12absinC,∴a2+b2-c2=2absinC,∴c2=a2+b2-2absinC.由余弦定理得:c2=a2+b2-2abcosC,∴sinC=cosC,解析S△ABC=12acsinB=3,∴c=,b2=a2+c2-2accosB=13,AC22+AB2-2²AC2²ABcosA=42+92-2³4³9³23=49?所以,所求中線長為7.12.解cosC=cos[π-(A+B)]=-cos(A+B)=-12,又∵C∈,∴C. ∴AB2=b2+a2-2abcos120°=(a+b)2-ab=10,