【導(dǎo)讀】2.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,已知3S3=a4-2,3S2=a3-2,則公比q=________.6.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則a10-12a12的值為_(kāi)_______.。7.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2·a3=2a1,且a4與2a7的等差中。項(xiàng)為54,則S5=________.10.定義“等和數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的和都為同一個(gè)常數(shù),11.等差數(shù)列{an}中,a10<0,且a11>|a10|,Sn為數(shù)列{an}的前n項(xiàng)和,則使Sn>0的n的。14.將正偶數(shù)集合{2,4,6,?}從小到大按第n組有2n個(gè)偶數(shù)進(jìn)行分組:{2,4},.則2010位于第________組.。15.(14分)數(shù)列{an}中,a1=13,前n項(xiàng)和Sn滿足Sn+1-Sn=n+1.。若bn=logaan+1,求數(shù)列{anbn}的前n項(xiàng)和Tn.17.(14分)設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知13S3,14S4的等比中項(xiàng)為15S5;13S3,14S4. 求甲、乙兩超市第n年銷售額的表達(dá)式;∴an=a1·qn-1=8·n-1=24-n.解析∵S16=a1+a162=8>0,1,2為x2-nx+2=0的根.∴m=12+4=92,n=1+2=3,∴|m-n|=|92-3|=32.