【導讀】2.設9=a0+a1x+a2x2+?+a9x9,則|a0|+|a1|+|a2|+?解析:判斷a0,a2,a4,?,a8為正,a1,a3,a5,?,a9為負,故令x=-1即可.故。由Tr+1=(-1)rCr828-rr,令r=8,+a5x5,若a2=80,則a0+a1+a2+?6.已知C0n+2C1n+22C2n+?+2nCnn=729,則C1n+C3n+C5n的值等于(). 成等差數(shù)列,由等差數(shù)列的知識可知,an=2n-。2n展開式中的二項式系數(shù)與項的系數(shù)對應相等,又第6項系數(shù)最大,解:由4=a0+a1x+a2x2+a3x3+a4x4,令x=1得(2-3)4=a0+a1+a2+a3+a4,=313+312-81=544.解:T6=C5n5,T7=C6n6,依題意有C5n25=C6n26?Ck82k≥Ck+182k+1,∴k=5或k=6.165x2+1x5,得Tr+1=Cr5??????1655-r·Cr5·x,令Tr+1為常數(shù)。項,則20-5r=0,所以r=4,常數(shù)項T5=C45×165=16.