【導(dǎo)讀】在坐標(biāo)軸上的角的集合。l=7π,r=2,則α=(弧度)。跟進練習(xí)6:已知扇形OAB的圓心角α為120o,半徑長為6,求AB的弧長;求弓形OAB的面積。圓弧所對圓心角的倍.π角的終邊相同,則在[0,2π]上,終邊與4?
【總結(jié)】§向量的概念(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
2024-11-27 23:46
【總結(jié)】誘導(dǎo)公式(二)崔文一、學(xué)習(xí)目標(biāo)1.掌握誘導(dǎo)公式四、五的推導(dǎo),并能應(yīng)用解決簡單的求值、化簡與證明問題.2.對誘導(dǎo)公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學(xué)推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學(xué)習(xí)指導(dǎo)五組誘導(dǎo)公式可以概括為一
2024-11-18 16:46
【總結(jié)】§數(shù)乘向量(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當(dāng)λ0時,與a;當(dāng)λ<
2024-11-18 16:44
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運算律。學(xué)習(xí)過程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁~87頁,找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結(jié)】§(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結(jié)】弧度制重點:用弧度制表示各種角以及弧度制與角度制之間的換算.難點:對弧度制的引入.一、角度制與弧度制的轉(zhuǎn)化同一個角,除零角之外,用“度”表示與用“弧度”表示是不同的數(shù)量.“度”不可省略,“弧度”即“rad”可省略.其換算關(guān)系以π=180°為轉(zhuǎn)化點.例1(1)把112°30′
2024-12-05 06:49
【總結(jié)】弧度制一、填空題1.-300°化為弧度是________.2.已知2弧度的圓心角所對的弦長為2,那么這個圓心角所對的弧長是________.3.若扇形圓心角為216°,弧長為30π,則扇形半徑為________.4.若2πα4π,且角α的終邊與-7π6角的終邊垂直,則α=
2024-12-05 10:17
【總結(jié)】誘導(dǎo)公式一.學(xué)習(xí)要點:誘導(dǎo)公式及其簡單應(yīng)用二.學(xué)習(xí)過程:一、復(fù)習(xí):誘導(dǎo)公式一:二、講解新課:公式二:公式三:公式四:公
【總結(jié)】3.2.2半角公式一。學(xué)習(xí)要點:半角公式及其簡單應(yīng)用。二。學(xué)習(xí)過程:復(fù)習(xí):升冪公式:降冪公式:新課學(xué)習(xí):1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-18 16:43
【總結(jié)】教學(xué)目標(biāo):能記住二倍角公式,會運用二倍角公式進行求值、化簡和證明,同時懂得這一公式在運用當(dāng)中所起到的用途。培養(yǎng)觀察分析問題的能力,尋找數(shù)學(xué)規(guī)律的能力,同時注意滲透由一般到特殊的化歸的數(shù)學(xué)思想及問題轉(zhuǎn)化的數(shù)學(xué)思想。重點難點:記住二倍角公式,運用二倍角公式進行求值、化簡和證明;在運用當(dāng)中如何正確恰當(dāng)運用二倍角公式一、引入新課1、si
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;
2024-11-27 23:47
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
【總結(jié)】§角的概念的推廣(課前預(yù)習(xí)案)班級:__姓名:__編寫:一、新知導(dǎo)學(xué):在平面內(nèi),角可以看做是一條射線繞著它的端點旋轉(zhuǎn)而成的圖形.旋轉(zhuǎn)起始時的射線叫做角的,終止時的射線叫做角的,射線的端點叫做角的.按逆時針方向旋轉(zhuǎn)所得到的角為,而按順時針方向旋轉(zhuǎn)所得到的角為
【總結(jié)】一、自學(xué)目標(biāo):1、理解半角公式的推導(dǎo)過程2、會運用半角公式進行相關(guān)的運算。二、自學(xué)過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導(dǎo)方法是2?S與2?C兩
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點:數(shù)乘向量、向量共線和三點共線的判斷。二.學(xué)習(xí)過程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長度與方向有什么變化?定義:實數(shù)λ與向量a的積是