【導(dǎo)讀】的值奎屯王新敞新疆。跟進練習(xí)2:求2coscos55??
【總結(jié)】§正弦函數(shù)的性質(zhì)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當(dāng)x?______________時,maxy?____;當(dāng)x=________________時,miny?
2024-11-18 16:46
【總結(jié)】§向量的概念(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
2024-11-27 23:46
【總結(jié)】學(xué)科:數(shù)學(xué)課題:換底公式教學(xué)目標(biāo)(三維融通表述):通過講解學(xué)生掌握換底公式,會運用換底公式進行靈活運算教學(xué)重點:對換底公式的理解及應(yīng)用教學(xué)難點:運用換底公式進行靈活運算教學(xué)過程教學(xué)環(huán)節(jié)問題與任務(wù)時間教師活動學(xué)生活動新課講解
2024-11-19 23:23
【總結(jié)】§數(shù)乘向量(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當(dāng)λ0時,與a;當(dāng)λ<
2024-11-18 16:44
【總結(jié)】撰稿教師:李麗麗自學(xué)目標(biāo),并理解其幾何意義。2.理解和應(yīng)用向量數(shù)乘的運算律。學(xué)習(xí)過程一、※課前準(zhǔn)備(預(yù)習(xí)教材86頁~87頁,找出疑惑之處)二、※新課導(dǎo)學(xué)1.?dāng)?shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【總結(jié)】§三角函數(shù)的誘導(dǎo)公式(2)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)2???的誘導(dǎo)公式公式四cos()2???=sin()2???=tan()2???=2.α與2????
2024-11-27 23:50
【總結(jié)】§任意角的三角函數(shù)(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué):在直角坐標(biāo)系中,設(shè)α是一個任意角,α終邊上任意一點P(除了原點)的坐標(biāo)為(,)xy,它與原點的距離為r,那么(1)比值yr叫做α的____,記作____;(2)比值xr叫做α的____,記
2024-11-27 23:51
【總結(jié)】角的概念的推廣3月6日編者:高小燕審稿人:全組人員星期五授課類型:新授學(xué)習(xí)目標(biāo)1、通過實例體會任意角的概念(包括正角、負(fù)角、零角)并會完成角的加減運算2、會表示所有與α角終邊相同的角(包括α角)3、體會運動變化觀點,深刻理解
【總結(jié)】§兩角和與差的正弦(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、??sin????,??sin????。2、公式的結(jié)構(gòu)特征sin()????sin?cos??co
2024-11-27 23:36
【總結(jié)】§兩角和與差的余弦(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、公式)(???C:cos(-)???令?=-(??)得)(???C:cos()????特征:①
2024-11-27 23:39
【總結(jié)】§兩角和與差的正切(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1.??tan????,??tan????。注意:1?必須在定義域范圍內(nèi)使用上述公式,tan?,tan?,tan(?
2024-11-18 16:43
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;
2024-11-27 23:47
【總結(jié)】§弧度制與角度制(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、長度等于半徑長的圓弧所對的圓心角叫做,這種以弧度為單位來度量角的制度叫做。2、在半徑為r的圓中,弧長為l的弧所對圓心角為α,則。3、完成下列表格度數(shù)
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個不共線的向量來表示。如圖,設(shè)2
【總結(jié)】一、自學(xué)目標(biāo):1、理解半角公式的推導(dǎo)過程2、會運用半角公式進行相關(guān)的運算。二、自學(xué)過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導(dǎo)方法是2?S與2?C兩
2024-11-27 23:35