【摘要】余弦函數(shù)圖像和性質(1)學案(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標,牢記余弦函數(shù)的五個關鍵點,用五點法熟練作余弦函數(shù)的簡圖。,并用集合符號來表示;、余弦函數(shù)的圖象之間的關系,能說出函數(shù)co
2024-11-18 16:44
【摘要】余弦函數(shù)圖像和性質(二)(3)月()日編者:高小燕審稿人:全組人員星期授課類型:新授學習目標根據(jù)余弦函數(shù)圖象的特征,結合正弦函數(shù)的性質學習余弦函數(shù)的性質:單調性、奇偶性、對稱性和周期性等。課堂內(nèi)容展示自學指導:余弦函數(shù)xycos?
【摘要】誘導公式(一)一、學習目標1.通過本節(jié)內(nèi)容的教學,使學生掌握?+?k2,-?角的正弦、余弦和正切的誘導公式及其探求思路,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力;二、教學重點、
2024-11-18 16:46
【摘要】誘導公式(三)一、學習目標1.通過本節(jié)內(nèi)容的教學,使學生進一步理解和掌握四組正弦、余弦和正切的誘導公式,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,運算推理能力、分析問題和解決問題的能力;二、教學重點、難點重點:四組誘導公式及這四組誘導公式
2024-11-28 01:12
【摘要】學習目標掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.學習過程一、課前準備自學過程:1、cos()????,2、cos()????
2024-11-27 23:39
【摘要】復習回顧:?完成下列和角公式sin()????cos()????tan()????sincossincos?????coscossinsin?????思考:若我們可以得到怎樣的結論????tantan1tantan???
2024-11-18 12:09
【摘要】學習目標1、理解以兩角差的余弦公式為基礎,推導兩角和、差正弦的方法。2、體會三角恒等變換特點的過程,理解推導過程,掌握公式的應用。學習過程1、兩角和的余弦公式:2、兩角差的余弦公式:
2024-11-27 23:36
【摘要】兩角和與差的正弦公式一.學習要點:兩角和與差的正弦公式及其簡單應用。二.學習過程:1.兩角和與差的正弦公式及推導:公式:
【摘要】高一數(shù)學正切函數(shù)的圖像與性質林銀玲目標1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質;2、能利用正切函數(shù)的性質解決最值、奇偶性、單調性、周期性等有關問題;自學指
【摘要】兩角和與差的正切公式一.學習要點:兩角和與差的正切公式及其簡單應用。二.學習過程:1.公式及其推導:2.公式的結構特征:2.公式的運用:例1求tan15?和tan75?的值例2求下列各式的值:1?1tan751tan75??2?
【摘要】撰稿教師:李麗麗學習目標,會進行平面向量數(shù)量積的坐標運算。。學習過程一、課前準備(預習教材112頁~114頁,找出疑惑之處)二、新課導學1.向量內(nèi)積的坐標運算已知兩個非零向量????1122a=x,y,b=x,y,ab=?(坐標形式)。:
【摘要】兩角和與差的余弦公式一.學習要點:兩角和與差的余弦公式及其簡單應用。二.學習過程:1.兩角和與差的余弦公式及推導:公式:
【摘要】已知三角函數(shù)值求角(二)一.學習要點:已知三角函數(shù)值求角二.學習過程:一、復習:1.反正弦,反余弦函數(shù)的意義:2.已知三角函數(shù)求角:二、講解新課:反正切函數(shù)三、講解范例:例1(1)已知?????????2,231tan??xx且,求x
2024-11-27 23:47
【摘要】3.1兩角和與差的三角公式習題課例1將下列sincosaxbx?化成sin()Ax??的形式(1)3sin3cosxx?;(2)3sincosxx?;(3)sin3cosxx??;(4)sin3cosxx??;(5)sincosxx?;(6)sincosxx?
2024-11-27 23:35
【摘要】2020年高中數(shù)學冪函數(shù)學案新人教B版必修1一、三維目標:1.理解冪函數(shù)的概念,會畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質,并能進行簡單的應用.3.滲透辨證唯物主義觀點和方法論,培養(yǎng)學生運用具體問題具體分析的方法分析問題、
2024-11-19 23:24