【導(dǎo)讀】,弄清正方形與平行四邊形、菱形、矩形的關(guān)系。1和性質(zhì)定理2。慣,逐步掌握說(shuō)理的基本方法。上呈現(xiàn)這兩種變化,為后面尋求平行四邊形、矩形、菱形、正方形的關(guān)系打下基礎(chǔ)。正方形是軸對(duì)稱(chēng)圖形嗎?如是,它有幾條對(duì)稱(chēng)軸?解:正方形ABCD是菱形,對(duì)角線AC,BD一定互相垂直,所以∠AOB=90°.正方形ABCD是。矩形,又是菱形,所以:∠BAD=90°且對(duì)角線AC平分∠BAD,因此:∠OAB=45°才能剪出一個(gè)正方形?在教材中,并沒(méi)有明確的給出正方形的判定定理。那么教師在課堂上應(yīng)該幫助學(xué)生理。為了實(shí)現(xiàn)這個(gè)目標(biāo),在本節(jié)課的開(kāi)始,教師就采取了兩種方式呈現(xiàn)正方形的形成過(guò)程,過(guò)程中又再次強(qiáng)化了這種認(rèn)識(shí)。通過(guò)層層鋪墊,讓學(xué)生明確矩形+鄰邊相等就是正方形,正方形的判定是需要一個(gè)條件一個(gè)條件“疊加”完成的。