【導讀】描點、連線得函數(shù)y=cos(x-3?)在一個周期內(nèi)的圖象,如圖所示:。常見并且有效的方法,一定要引起足夠的重視!可先作出y=sinx,x∈[0,2π]的圖象,再由平移、翻折等得到y(tǒng)=sin,x∈[-。滿足sinx≥12的x為π6≤x≤5π6.再由誘導公式一知:終邊相同的角的三角函數(shù)值相同,
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)1.函數(shù)y=-cosx在區(qū)間??????-π2,π2上是()A.增函數(shù)B.減函數(shù)C.先減后增函數(shù)D.先增后減函數(shù)解析:結(jié)合函數(shù)在??????-π2,π2上的圖象可知C正確.答案:C2.已知函數(shù)y=3cos(π-x),則當x=___________
2024-11-19 23:26
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)考查知識點及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|sinx|的一個單調(diào)增區(qū)間是()A.??????-π4,π4
【總結(jié)】§1.4三角函數(shù)的圖像與性質(zhì)§正弦函數(shù)、余弦函數(shù)的圖象【學習目標、細解考綱】學會“五點法”與“幾何法”畫正弦函數(shù)圖象,會用“五點法”畫余弦函數(shù)圖象.【知識梳理、雙基再現(xiàn)】1.“五點法”作正弦函數(shù)圖象的五個點是______、______、______、______、______.2.“五點法”作余弦函
2024-11-30 13:51
【總結(jié)】三角函數(shù)的圖象和性質(zhì)變式1.三角函數(shù)圖像變換將函數(shù)12cos()32yx???的圖像作怎樣的變換可以得到函數(shù)cosyx?的圖像?變式1:將函數(shù)cosyx?的圖像作怎樣的變換可以得到函數(shù)2cos(2)4yx???的圖像?解:(1)先將函數(shù)cosyx?圖象上各點的縱坐標擴大為原來的2倍(橫坐標不變),即
2024-12-05 06:48
【總結(jié)】【優(yōu)化指導】2021年高中數(shù)學正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難正、余弦函數(shù)的奇偶性2、57、8正、余弦函數(shù)的周期性1、3、69、10奇偶性與周期性的綜合411121.(2021·陜西高考)函
2024-12-09 03:45
【總結(jié)】【優(yōu)化指導】2021年高中數(shù)學正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)的單調(diào)區(qū)間問題17三角函數(shù)的最值(值域)問題2、510、11比較大小問題39綜合問題4、68121.函數(shù)y=|s
【總結(jié)】【優(yōu)化指導】2021年高中數(shù)學正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)學業(yè)達標測試新人教A版必修41.函數(shù)y=cos??????x+π2(x∈R)是()A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.無法確定解析:y=cos??????x+π2=-sinx,所以此函數(shù)為奇函數(shù).答案:A2
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(一)1.了解周期函數(shù)與最小正周期的意義.(難點、易錯點)2.了解三角函數(shù)的周期性和奇偶性.(重點)3.會求函數(shù)的周期和判斷三角函數(shù)的奇偶性.(重點)1.函數(shù)的周期性(1)對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當
2024-11-19 18:02
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的性質(zhì)(二)1.借助圖象理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等).(重點)2.能利用性質(zhì)解決一些簡單問題.(重點、難點)正、余弦函數(shù)的圖象與性質(zhì)函數(shù)y=sinxy=cos
2024-11-19 17:33
【總結(jié)】第一頁,編輯于星期六:點二十七分。,1.4三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象,第二頁,編輯于星期六:點二十七分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點二十七分。,第四頁...
2024-10-22 18:35
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動到直角坐標系中確定對應的點(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
2025-06-05 23:39
【總結(jié)】第一篇:、余弦函數(shù)的圖象教案1(人教A必修4) 第一章三角函數(shù) 、余弦函數(shù)的圖象(1) 教學目的: 知識目標:(1)利用單位圓中的三角函數(shù)線作出y=sinx,x?R的圖象,明確圖象的形狀; ...
2024-11-16 00:27
【總結(jié)】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應從變化函數(shù)名稱入手,盡量化
2024-12-05 01:55
【總結(jié)】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡例1化簡三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號下的式子化為完全平方式,再開出來運算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
2024-12-05 06:46
【總結(jié)】1.正切函數(shù)的性質(zhì)與圖象1.理解正切函數(shù)的性質(zhì),掌握正切函數(shù)的圖象的作法.2.能利用正切函數(shù)的圖象與性質(zhì)解決與正切函數(shù)有關(guān)的基本問題.基礎(chǔ)梳理一、正切函數(shù)的性質(zhì)1.正切函數(shù)的定義域和值域:定義域為??????x???x≠kπ+π2,k∈Z,值域為R.2.正切函數(shù)的周期性:y
2024-11-19 17:41