【導(dǎo)讀】本節(jié)課我們將學(xué)習(xí)常見函數(shù)的導(dǎo)數(shù)。首先我們來求下面幾個(gè)函數(shù)的導(dǎo)數(shù)。圖象的切線,求b的值和切點(diǎn)坐標(biāo).,點(diǎn)P為y=x2上任意一點(diǎn),求P在什么位置時(shí)到直線距離最短.,則它的導(dǎo)函數(shù)為.上的點(diǎn)1(2,)8的切線方程為.
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》復(fù)習(xí)2導(dǎo)學(xué)案蘇教版選修1-1復(fù)習(xí)要求:?jiǎn)握{(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間.;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值;會(huì)求閉區(qū)間上函數(shù)的最大值、最小值.課前預(yù)習(xí):1.知識(shí)要點(diǎn)回顧:(1)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系:(2)函
2025-11-25 23:46
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第9課時(shí)極大值與極小值教學(xué)目標(biāo):、極小值的概念;、極小值;.教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟教學(xué)難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)::
2025-11-10 17:30
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第2課時(shí)曲線上一點(diǎn)處的切線教學(xué)目標(biāo):;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學(xué)重點(diǎn):理解曲線在一點(diǎn)處的切線的定義,以及曲線在一點(diǎn)處的切線的斜率的定義,掌握曲線在一點(diǎn)處切線斜率及切線方程的求法教學(xué)難點(diǎn):理解曲線在一點(diǎn)處的
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo)、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用.過程中,體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.課前預(yù)學(xué):?jiǎn)栴}1:一般地,如果在區(qū)間[a,b]上函數(shù)y=f(x)的圖象是一條連續(xù)不斷的曲線,那么它必有最大
2025-11-26 06:44
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》平均變化率導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):通過對(duì)一些實(shí)例的直觀感知,構(gòu)建平均變化率的概念,并初步運(yùn)用和加深理解利用平均變化率來刻畫變量變化得快與慢的原理;通過從實(shí)際生活背景中構(gòu)建數(shù)學(xué)模型來引入平均變化率,領(lǐng)會(huì)以直代曲和數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生的抽象思維與歸納綜合的能力,提升學(xué)生的數(shù)
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第3課時(shí)瞬時(shí)速度與瞬時(shí)加速度教學(xué)目標(biāo):,掌握如何由平均速度和平均加速度“逼近”瞬時(shí)速度與瞬時(shí)加速度的過程.理解平均變化率的幾何意義;理解△x無限趨近于0的含義;.教學(xué)重點(diǎn):瞬時(shí)速度與瞬時(shí)加速度的定義教學(xué)難點(diǎn):瞬時(shí)速度與瞬時(shí)加速度的求法教學(xué)過程:
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用2導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):、用料最省、效率最高等優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際問題中的作用.,體會(huì)導(dǎo)數(shù)方法在研究函數(shù)性質(zhì)中的一般性和有效性.課前預(yù)學(xué):16的線段分成兩段,各圍成一個(gè)正方形,這兩個(gè)正方形面積的最小值為.,其母線長(zhǎng)
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、理解極大值與極小值的概念;2、會(huì)求簡(jiǎn)單函數(shù)的極大值與極小值。重點(diǎn):極大值與極小值的概念和求法。課前預(yù)學(xué):?jiǎn)栴}1:判斷函數(shù)y=f(x)的極值的一般方法解方程
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—最大值與最小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..重點(diǎn):求在閉區(qū)間[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值課前預(yù)習(xí):?jiǎn)栴}1:函數(shù)的最值函數(shù)的最
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進(jìn)一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點(diǎn):應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為
【總結(jié)】常見函數(shù)的導(dǎo)數(shù)教學(xué)過程Ⅰ.課題導(dǎo)入[師]我們上一節(jié)課學(xué)習(xí)了導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義.我們是用極限來定義函數(shù)的導(dǎo)數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導(dǎo)數(shù).以后可以把它們當(dāng)作直接的結(jié)論來用.Ⅱ.講授新課[師]請(qǐng)幾位同學(xué)上來用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).=C(C是常數(shù)),求y′.[學(xué)生板演]解:y=f(x)=C,∴
2025-11-10 19:51
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-11-08 15:21
【總結(jié)】§本課時(shí)欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實(shí)際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡(jiǎn)單的實(shí)際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實(shí)際問題的過程中體會(huì)建模思想.2.感受導(dǎo)數(shù)知識(shí)在解決實(shí)際問題中的作
2025-11-09 08:07
【總結(jié)】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運(yùn)用導(dǎo)數(shù)公式和導(dǎo)數(shù)運(yùn)算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運(yùn)算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡(jiǎn)單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2025-11-08 23:13
【總結(jié)】1.2.3簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)【學(xué)習(xí)要求】1.了解復(fù)合函數(shù)的概念,掌握復(fù)合函數(shù)的求導(dǎo)法則.2.能夠利用復(fù)合函數(shù)的求導(dǎo)法則,并結(jié)合已經(jīng)學(xué)過的公式、法則進(jìn)行一些復(fù)合函數(shù)的求導(dǎo)(僅限于形如f(ax+b)的導(dǎo)數(shù)).【學(xué)法指導(dǎo)】復(fù)合函數(shù)的求導(dǎo)將復(fù)雜的問題簡(jiǎn)單化,體現(xiàn)了轉(zhuǎn)化思想;學(xué)習(xí)中要通過中間變量的引入理解