【導讀】的距離和也固定。的點的軌跡叫橢圓。定點F1、F2叫做橢圓的焦點。如果;軌跡又是什么。[1]平面上----這是大前提。[2]動點M到兩個定點F1、[3]常數(shù)2a要大于焦距2C. 以F1,F(xiàn)2所在直線為x軸,軸,建立直角坐標系,判定下列橢圓的焦點在?什么條件,就表示橢圓?則實數(shù)k的取值范圍是_________710k??邊BC長為6,周長為16,
【總結】第二章圓錐曲線與方程2.2橢圓2.橢圓及其標準方程,標準方程的兩種形式及推導過程.2.會根據(jù)條件確定橢圓的標準方程,掌握用待定系數(shù)法求橢圓的標準方程.目標了然于胸,讓講臺見證您的高瞻遠矚新知視界1.橢圓的定義平面內(nèi)與兩個定點F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1
2025-11-12 23:17
【總結】城郊中學高二數(shù)學組:代俊俊如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個定點---兩點間距離確定;(常記作2c)(3)繩長---軌跡上任
2025-11-09 00:48
【總結】新課標人教版課件系列《高中數(shù)學》選修2-1《橢圓的標準方程》教學目標?1、理解橢圓的定義明確焦點、焦距的概念?2、熟練掌握橢圓的標準方程,會根據(jù)所給的條件畫出橢圓的草圖并確定橢圓的標準方程?3、能由橢圓定義推導橢圓的方程4、啟發(fā)學生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學會分析問題和創(chuàng)造地解決問題;
2025-08-04 16:52
【總結】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2025-11-09 12:15
【總結】已知方程表示焦點在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點在y軸上的橢圓,則m的取值范圍是.22xy+=1m
2025-11-09 08:56
【總結】§橢圓橢圓及其標準方程(一)一、基礎過關1.設F1,F(xiàn)2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段2.設F1,F(xiàn)2是橢圓x225+y29=1的焦點,P為
2025-11-10 10:30
【總結】橢圓的方程與性質(zhì)一、選擇題1.下列命題是真命題的是()A.到兩定點距離之和為常數(shù)的點的軌跡是橢圓B.到定直線cax2?和定點F(c,0)的距離之比為ac的點的軌跡是橢圓C.到定點F(-c,0)和定直線cax2??的距離之比為ac(ac0)的點的軌跡是左半個橢圓
2025-11-03 02:00
【總結】《橢圓的幾何性質(zhì)》教學目標?知識與技能目標?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標準方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準線及焦半徑的概念,利用信息技術初步了解橢圓的第二定義.?過程與方法目標?(1)復習與引入過程
2025-07-24 18:14
【總結】公開課教案授課人:佟成軍授課內(nèi)容:《橢圓(二)》授課時間:授課對象:高二(9)全體學生聽課人:全市各學校高二數(shù)學教師部門負責人簽名:
2025-07-24 02:15
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的標準方程(2)教學案蘇教版選修1-1教學目標:1.掌握橢圓的標準方程及求標準方程的方法.[2.能根據(jù)橢圓的標準方程判定其焦點所在位置.教學重點:求橢圓標準方程的方法及根據(jù)方程確定焦點位置.教學難點:求橢圓標準方程的方法.教學過程:一、復習導引1.已知橢圓的方程為19252
2025-11-25 18:02
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓及其標準方程課后知能檢測新人教B版選修1-1一、選擇題1.已知平面內(nèi)兩定點A,B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A,B為焦點的橢圓”,那么甲是乙的()A.充分不必要條件B.必要不充分條件
2025-11-24 11:30
【總結】y(第二課時)xoMF2F1(第二課時)雙曲線及其標準方程系數(shù)哪個為正,焦點就在哪個軸上平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標準方程
2025-11-10 16:17
【總結】平面內(nèi)到兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓定點F1、F2叫做橢圓的焦點。說明:注意:ac0F1F2P定義:│PF1│+│PF2│=2a│F1F2│=2c——焦距oyx?1F
2025-11-09 01:22
【總結】復習與思考、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于F1F2)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。22221(0)yxabab????焦點在y軸上22221(0)
2025-11-09 01:24
【總結】江蘇省建陵高級中學2021-2021學年高中數(shù)學橢圓的標準方程(2)導學案(無答案)蘇教版選修1-1【學習目標】1.靈活應用橢圓的兩個定義解題;2.能推導橢圓的焦半徑公式,并會用此公式解決問題。【課前預習】1.在橢圓)0(12222????babyax上的點M(x0,y0)的左焦半徑|MF1|=