【總結(jié)】PF2F1§橢圓及其標(biāo)準(zhǔn)方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解橢圓的定義【難點(diǎn)】掌握橢圓的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)P3
2024-11-28 00:11
【總結(jié)】標(biāo)準(zhǔn)方程復(fù)習(xí)引入:yOAF1F2xMcc把平面內(nèi)與兩個定點(diǎn)F1、F2的距離的和等于常數(shù)2a(大于|F1F2|)的點(diǎn)的軌跡叫作橢圓.復(fù)習(xí)引入:yOAF1F2xMcc把平面內(nèi)
2025-07-24 18:14
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程二、教學(xué)過程1、引入課題2、復(fù)習(xí)定義3、推導(dǎo)方程4、結(jié)構(gòu)分析5、鞏固練習(xí)壓扁教學(xué)過程F1F2P兩焦點(diǎn)之間的距離叫做焦距.定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。平面內(nèi)與兩個定點(diǎn)F1、F2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫橢圓2、當(dāng)線長小于
2024-11-18 15:25
【總結(jié)】1橢圓的定義?平面上到兩個定點(diǎn)的距離的和(2a)等于定長(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2c)。F1F2M橢圓定義的文字表述:橢圓定義的符號表述:1222MFMFac???3滿足幾個條件的動點(diǎn)的軌
2024-11-18 01:24
【總結(jié)】《曲線與方程》教學(xué)目標(biāo)?理解并能運(yùn)用曲線的方程、方程的曲線的概念,建立“數(shù)”與“形”的橋梁,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識.?教學(xué)重點(diǎn):求曲線的方程?教學(xué)難點(diǎn):掌握用直接法、代入法、交軌法等求曲線方程的方法(1)、求第一、三象限里兩軸間夾角平分線的坐標(biāo)滿足的關(guān)系第一、三象限角平分線??點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相等
2024-11-18 12:14
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程(說課稿)一、教材分析1、地位及作用圓錐曲線是一個重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時,圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。推導(dǎo)橢圓的標(biāo)準(zhǔn)方程的方法對雙曲線、拋物線方程的推導(dǎo)具有直接的類比作用,為學(xué)習(xí)雙曲線、拋物線內(nèi)容提供了基本模式和理論基礎(chǔ)。因此本節(jié)課具有承前啟后的作用,是本章的重點(diǎn)內(nèi)容。2、教
2025-06-07 23:16
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程橢圓的定義?平面內(nèi)與兩個定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做橢圓。?這兩個定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩個焦點(diǎn)間的距離叫做橢圓的焦距。你能根據(jù)橢圓的定義畫一個橢圓嗎?設(shè)橢圓的兩個焦點(diǎn)為F1,F(xiàn)2,它們之間的距離為2c,橢圓上任意一點(diǎn)與F1、F2的距離之
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程課后知能檢測蘇教版選修2-1一、填空題1.橢圓25x2+16y2=400的焦點(diǎn)坐標(biāo)為________.【解析】橢圓方程可化為x216+y225=1,∴c2=9,∴c=3,∴焦點(diǎn)坐標(biāo)為(0,±3).
2024-12-05 09:30
【總結(jié)】定義圖象方程焦點(diǎn)系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【總結(jié)】高中數(shù)學(xué)選修2-1復(fù)習(xí)回顧橢圓的定義?焦點(diǎn)?焦距?平面內(nèi)到兩個定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡——橢圓.兩個定點(diǎn)F1,F(xiàn)2——橢圓的焦點(diǎn).兩焦點(diǎn)間的距離——橢圓的焦距.汽車貯油罐的橫截面的外輪廓線的形狀像橢圓.橢圓?橢圓?
2025-07-24 04:33
【總結(jié)】y(第二課時)xoMF2F1(第二課時)雙曲線及其標(biāo)準(zhǔn)方程系數(shù)哪個為正,焦點(diǎn)就在哪個軸上平面內(nèi)與兩個定點(diǎn)F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標(biāo)準(zhǔn)方程
2024-11-19 16:17
【總結(jié)】天體的運(yùn)行如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個定點(diǎn)---兩點(diǎn)間距離確定;(常記作2c)(3)繩長---軌跡上任意點(diǎn)到兩定點(diǎn)距離
2024-11-18 13:57
【總結(jié)】(一)創(chuàng)設(shè)情境,導(dǎo)入新課提問1:我們已經(jīng)全面學(xué)習(xí)了圓的有關(guān)知識,回顧一下我們是怎樣研究圓的?提問2:上節(jié)課,我們一起共同學(xué)習(xí)了橢圓的定義,本節(jié)課將繼續(xù)研究橢圓,你覺得我們應(yīng)該從哪些方面來研究?(二)問題引領(lǐng),探究新知問題1:橢圓的定義是什么?追問3:你能用一個代數(shù)式描述定義么?追問2:為了便于求橢圓方程,這些已知量如何
2024-09-01 15:14
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標(biāo)?(1)復(fù)習(xí)與引入過程
【總結(jié)】?1.知識與技能?能解決與橢圓有關(guān)的基本問題.?能處理與橢圓有關(guān)的綜合問題.?2.過程與方法?掌握利用方程研究曲線性質(zhì)的基本方法.?3.情感態(tài)度與價值觀?價值觀:進(jìn)一步體會曲線與方程的對立關(guān)系,感受坐標(biāo)法在研究幾何圖形中的作用.?[例1](2022·湖南文,19)為
2025-01-18 17:12