【總結(jié)】?(1)平面上----這是大前提?(2)動(dòng)點(diǎn)M到兩個(gè)定點(diǎn)F1、F2的距離之和是常數(shù)2a?(3)常數(shù)2a要大于焦距2c1222MFMFac???4??2222+=10xyabab??2222+=10xyabba分母哪個(gè)大,焦點(diǎn)就在哪個(gè)軸
2024-11-18 01:24
【總結(jié)】定義與方程主講人:李雙杰數(shù)學(xué)實(shí)驗(yàn)?[1]取一條細(xì)繩,?[2]把它的兩端固定在板上的兩點(diǎn)F1、F2?[3]用鉛筆尖(M)把細(xì)繩拉緊,在板上慢慢移動(dòng)看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應(yīng)當(dāng)
2025-07-25 15:28
【總結(jié)】y(第二課時(shí))xoMF2F1(第二課時(shí))雙曲線及其標(biāo)準(zhǔn)方程系數(shù)哪個(gè)為正,焦點(diǎn)就在哪個(gè)軸上平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差的絕對(duì)值等于常數(shù)(小于|F1F2|)的點(diǎn)的軌跡????12-,0,0,F(xiàn)cFc????1????20,-0,,F(xiàn)cFc標(biāo)準(zhǔn)方程
2024-11-19 16:17
【總結(jié)】復(fù)習(xí)::到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222????
2024-11-18 11:25
【總結(jié)】標(biāo)準(zhǔn)方程范圍對(duì)稱性頂點(diǎn)坐標(biāo)焦點(diǎn)坐標(biāo)半軸長離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對(duì)稱;關(guān)于原點(diǎn)成中心對(duì)稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半
【總結(jié)】定義與方程罐車的橫截面數(shù)學(xué)實(shí)驗(yàn)?[1]取一條細(xì)繩,?[2]把它的兩端固定在板上的兩點(diǎn)F1、F2?[3]用鉛筆尖(M)把細(xì)繩拉緊,在板上慢慢移動(dòng)看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應(yīng)當(dāng)大于F1、F2之間的距離。[2]
2024-11-17 20:06
【總結(jié)】求曲線的軌跡方程2020年12月25日星期五成都市新都香城中學(xué)數(shù)學(xué)組李發(fā)林幾種常見求軌跡方程的方法1.直接法由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡得曲線的方程,這種方法叫直接法.例1:已知一曲線是與兩個(gè)定點(diǎn)O(0,0)、A(3,0)距離的比為1/2
2024-11-18 01:22
【總結(jié)】定義與方程罐車的橫截面數(shù)學(xué)實(shí)驗(yàn)?[1]取一條細(xì)繩,?[2]把它的兩端固定在板上的兩點(diǎn)F1、F2?[3]用鉛筆尖(M)把細(xì)繩拉緊,在板上慢慢移動(dòng)看看畫出的圖形F1F2M觀察做圖過程:[1]繩長應(yīng)當(dāng)大于F1、F2之間的距離。[2]由于繩長固定,所以M到兩個(gè)定點(diǎn)的距
2025-07-25 09:00
【總結(jié)】(二)2.2.1橢圓的標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)要求】加深理解橢圓定義及標(biāo)準(zhǔn)方程,能熟練求解與橢圓有關(guān)的軌跡問題.【學(xué)法指導(dǎo)】通過例題的學(xué)習(xí),進(jìn)一步用運(yùn)動(dòng)、變化的觀點(diǎn)認(rèn)識(shí)橢圓,感知數(shù)學(xué)與實(shí)際生活的聯(lián)系,通過生成橢圓的不同方法,體會(huì)橢圓的幾何特征的不同表現(xiàn)形式.本專題欄目開關(guān)試一試研一
2025-07-24 04:19
【總結(jié)】雙曲線的簡單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點(diǎn),于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程橢圓的定義?平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做橢圓。?這兩個(gè)定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩個(gè)焦點(diǎn)間的距離叫做橢圓的焦距。你能根據(jù)橢圓的定義畫一個(gè)橢圓嗎?設(shè)橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,它們之間的距離為2c,橢圓上任意一點(diǎn)與F1、F2的距離之
【總結(jié)】雙曲線的簡單幾何性質(zhì)(一)復(fù)習(xí)回顧(1)雙曲線的標(biāo)準(zhǔn)方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質(zhì)的,分析雙曲線0012222????babyax(1)范圍(2)對(duì)稱性x≥a,或x≤-a在標(biāo)準(zhǔn)方
【總結(jié)】定義圖象方程焦點(diǎn)系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【總結(jié)】天體的運(yùn)行如何精確地設(shè)計(jì)、制作、建造出現(xiàn)實(shí)生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個(gè)定點(diǎn)---兩點(diǎn)間距離確定;(常記作2c)(3)繩長---軌跡上任意點(diǎn)到兩定點(diǎn)距離
2024-11-17 12:08