【導(dǎo)讀】它的首項(xiàng)和公差分別是什么?用這種方法求通項(xiàng)需檢驗(yàn)a1是否滿(mǎn)足an.故只有當(dāng)r=0時(shí)該數(shù)列才是等差數(shù)列,條件,使之成為真命題.練習(xí):等差數(shù)列的前n項(xiàng)的和為Sn,且S10=100,S100=10,
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)13等差數(shù)列的前n項(xiàng)和(第2課時(shí))新人教版必修51.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=n2,則a8的值為()A.15B.16C.49D.64答案A解析a8=S8-S7=82-72=15.2.等差數(shù)列{an}中,S15=90
2024-11-28 01:20
【總結(jié)】景榮洲課前熱身(3)等差數(shù)列的性質(zhì).(1)等差數(shù)列的定義.一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列(2)等差數(shù)列通項(xiàng)公式dnaan)1(1???若a、b、c成等差數(shù)列,則2b=a+c(引申)若m、n、
2024-11-17 05:48
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)12等差數(shù)列的前n項(xiàng)和(第1課時(shí))新人教版必修51.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,a3=4,則公差d等于()A.1C.2D.3答案C解析由?????a1+2=6,a1+2d=4,解得
【總結(jié)】課題:必修⑤三維目標(biāo):1、知識(shí)與技能(1)理解等差數(shù)列前項(xiàng)和的定義以及等差數(shù)列前項(xiàng)和公式推導(dǎo)的過(guò)程,并理解推導(dǎo)此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認(rèn)識(shí)等差數(shù)列前項(xiàng)和的公式,利用公式求;等差數(shù)列通項(xiàng)公式與前項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;(3)會(huì)用等差數(shù)列的前項(xiàng)和公式解決一些簡(jiǎn)單的與前項(xiàng)和有關(guān)的問(wèn)題.
2025-06-07 23:27
【總結(jié)】等差數(shù)列的前n項(xiàng)和教材分析等差數(shù)列的前n項(xiàng)和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問(wèn)題.在現(xiàn)實(shí)生活中,等差數(shù)列的求和是經(jīng)常遇到的一類(lèi)問(wèn)題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項(xiàng)和提供了一種重要方法.教材首先通過(guò)具體的事例,探索歸納出等差數(shù)列前n項(xiàng)和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項(xiàng)和公式.為深化對(duì)公式的理解,通過(guò)對(duì)具體例子的研究,弄清等差數(shù)列的前n項(xiàng)和與等差
2025-06-07 23:54
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.2等差數(shù)列第二課時(shí)等差數(shù)列的性質(zhì),第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第四頁(yè),編輯于星期六...
2024-10-22 18:52
【總結(jié)】等差數(shù)列前n項(xiàng)和說(shuō)課稿各位評(píng)委,您們好。。下面我從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過(guò)程分析、板書(shū)設(shè)計(jì)分析、評(píng)價(jià)分析等六個(gè)方面對(duì)本節(jié)課設(shè)計(jì)進(jìn)行說(shuō)明。一、教材分析1、教材的地位與作用(1)等差數(shù)列的前n項(xiàng)和的公式是等差數(shù)列的定義、通項(xiàng)、前n項(xiàng)和三大重要內(nèi)容之一。(2)推導(dǎo)等差數(shù)列的前n項(xiàng)和公式提出了一種嶄新的數(shù)學(xué)方法——倒序求和法。(3)等差數(shù)列的前n項(xiàng)和公式
2025-04-07 02:59
【總結(jié)】等差數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和的性質(zhì),并能靈活運(yùn)用.n項(xiàng)和的最值問(wèn)題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項(xiàng)和Sn與an之間的關(guān)系對(duì)任意數(shù)列{an},Sn是前n項(xiàng)和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-05 10:14
【總結(jié)】§等差數(shù)列的前n項(xiàng)和(二)一、復(fù)習(xí)引入:重要結(jié)論??為等差數(shù)列na)1(?;的一次函數(shù)是關(guān)于nan??為等差數(shù)列na)2(?的二次函數(shù)是關(guān)于nSn??.,,21.12差數(shù)列并判斷該數(shù)列是否為等列的通項(xiàng)公式求這個(gè)數(shù)項(xiàng)和為的前已知數(shù)列例nnSnann??.,且無(wú)常數(shù)項(xiàng).2)
2024-11-18 15:26
【總結(jié)】§等差數(shù)列的前n項(xiàng)和(一)一、新課引入?100321:,10)""(,200??????師提出了問(wèn)題他的數(shù)學(xué)老歲數(shù)學(xué)王子德國(guó)高斯多年前???????)5150()992()1001(?.505050101???,,,3,2,1:項(xiàng)和嗎的前差數(shù)列你能用高斯的方法求等nn??(
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.2等差數(shù)列第一課時(shí)等差數(shù)列的概念及通項(xiàng)公式,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第四頁(yè),編...
【總結(jié)】等差數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo)掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問(wèn)題.讓學(xué)生親身經(jīng)歷“從特殊入手,研究對(duì)象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過(guò)程,培養(yǎng)他們觀(guān)察、分析、歸納、推理的能力.通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生
2024-12-08 20:23
【總結(jié)】等差數(shù)列的前n項(xiàng)和第二課時(shí)等差數(shù)列前n項(xiàng)和的應(yīng)用課前預(yù)習(xí)·巧設(shè)計(jì)名師課堂·一點(diǎn)通創(chuàng)新演練·大沖關(guān)第二章數(shù)列考點(diǎn)一考點(diǎn)二課堂強(qiáng)化課下檢測(cè)考點(diǎn)三
2025-01-06 16:35
【總結(jié)】2.等差數(shù)列的前n項(xiàng)和學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入數(shù)學(xué)史上有一顆光芒四射的巨星,他與阿基米德、牛頓齊名,被稱(chēng)為歷史上最偉大的三位數(shù)學(xué)家之一,他就是18世紀(jì)德國(guó)著名的數(shù)學(xué)家——高斯.高斯在上小學(xué)時(shí),就能很快地算出1+2+3+…+1
2024-11-17 23:16
【總結(jié)】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理11等差數(shù)列的前n項(xiàng)和本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2學(xué)習(xí)目標(biāo):探索并掌握等差數(shù)列的前n項(xiàng)和的公式本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理33…,按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)
2024-11-17 19:47