【總結(jié)】八、幾何法巧解動態(tài)平衡當(dāng)物體受三力作用而處于平衡狀態(tài)時,其合力為零,三個力的矢量依次恰好首尾相連,構(gòu)成閉合三角形。當(dāng)物體所受三個力中二個發(fā)生變化而又維持平衡關(guān)系時,這個閉合三角形總是存在,只不過形狀發(fā)生改變而已,比較這些不同形狀的矢量三角形,各力的大小及變化就一目了然了。相似三角形:當(dāng)三個力中的一個為恒力(大小方向都不變),另外兩個力的方向都發(fā)生變化,而且力構(gòu)成的三角形與題目給定的幾何關(guān)
2025-06-24 15:21
【總結(jié)】第一篇:用向量方法解立體幾何題(老師用) 用向量方法求空間角和距離 在高考的立體幾何試題中,求角與距離是??疾榈膯栴},其傳統(tǒng)的“三步曲”解法:“作圖、證明、解三角形”,作輔助線多、技巧性強(qiáng),是教學(xué)...
2024-10-14 09:02
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。 (1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2024-11-15 05:28
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時,可用定量的計算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】立體幾何——建坐標(biāo)系1.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等邊三角形.AB=BC=2,CD=SD=1.(Ⅰ)證明:SD⊥平面SAB;(Ⅱ)求AB與平面SBC所成的角的大小.2.如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.(Ⅰ)設(shè)P為AC的中點(diǎn),Q在AB上且AB
2025-06-17 02:07
【總結(jié)】立體幾何基礎(chǔ)訓(xùn)練題及詳解1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。(1).證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個平面的公共直線上。(2).證明共點(diǎn)問題,一般是先證明兩條直線交于一點(diǎn),再證明這點(diǎn)在第三條直線上,而這一點(diǎn)是兩個平面的公共點(diǎn),這第三條直
2025-06-07 21:33
【總結(jié)】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個 B、1個
2025-03-25 02:03
【總結(jié)】1、已知正方體,是底對角線的交點(diǎn).求證:(1)C1O∥面;(2)面.2、正方體中,求證:(1);(2).3、正方體ABCD—A1B1C1D1中.(1)求證:平面A1BD∥平面B1D1C;A1AB1BC1CD1DGEF(2)若E、F分別是AA1,
2025-03-26 05:42
【總結(jié)】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對角線一定為上底面的一個頂點(diǎn)和下底面的一個頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個頂點(diǎn)出發(fā)的對角線有2條.正五棱柱對角線的條
2025-04-07 21:28
【總結(jié)】活用未知數(shù)巧解幾何題東莞市石排中學(xué)何超【摘要】在數(shù)學(xué)幾何學(xué)習(xí)中,遇到一些特別的幾何問題,如果用常規(guī)的幾何方法求解或證明總是不盡人意,相當(dāng)復(fù)雜的;而如果我們能夠適時的引入未知數(shù),根據(jù)題意列方程來解決的話往往會峰回路轉(zhuǎn),水到渠成。本文作者將從幾個方面探討在問題中通過引入未知數(shù)來巧解幾何問題。【關(guān)鍵字】未知數(shù);
2025-06-07 20:12
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。(1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個平面的公共直線上。(2)證明共點(diǎn)問題,一般是先證
2025-06-07 21:19
【總結(jié)】第一篇:向量法在立體幾何中的運(yùn)用 龍源期刊網(wǎng)://. 向量法在立體幾何中的運(yùn)用 作者:何代芬 來源:《中學(xué)生導(dǎo)報·教學(xué)研究》2013年第27期 摘要:在近幾年的高考中利用向量的模和夾角公式求...
2024-10-21 23:33
【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-07 22:04