【總結(jié)】廣元外國(guó)語(yǔ)學(xué)校高一數(shù)學(xué)必修2立體幾何測(cè)試題試卷滿分:150分考試時(shí)間:120分鐘班級(jí)___________姓名__________學(xué)號(hào)_________分?jǐn)?shù)___________第Ⅰ卷一、選擇題(每小題5分,共60分)1、線段在平面內(nèi),則直線與平面的位置關(guān)系是A、B、C、由線段的長(zhǎng)短而定D、以上都不對(duì)2、下列說(shuō)法正確的是
2025-03-26 05:42
【總結(jié)】高中平面解析幾何公式,hero52制作,與大家共勉,08年我們一起取得好成績(jī)。初中幾何全部定理、公式1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條
2025-06-26 21:49
【總結(jié)】高中立體幾何典型500題及解析(一)1、二面角是直二面角,,設(shè)直線與所成的角分別為∠1和∠2,則(A)∠1+∠2=900(B)∠1+∠2≥900(C)∠1+∠2≤900(D)∠1+∠2<900解析:C如圖所示作輔助線,分別作兩條與二面角的交線垂直的線,則∠1和∠2分別為直線AB與平面所成的角。根據(jù)最小角定理:斜線和平面所成的角,是這條斜線和平
【總結(jié)】立體幾何選擇題:一、三視圖考點(diǎn)透視:①能想象空間幾何體的三視圖,并判斷(選擇題).②通過(guò)三視圖計(jì)算空間幾何體的體積或表面積.③解答題中也可能以三視圖為載體考查證明題和計(jì)算題.,該幾何體的體積為,則正視圖中x的值為()A.5B.4C
2025-04-04 05:14
【總結(jié)】高中立體幾何典型習(xí)題及解析(二)26.在空間四邊形ABCD中,E,H分別是AB,AD的中點(diǎn),F(xiàn),G分別是CB,CD的中點(diǎn),若AC+BD=a,ACBD=b,求.解析:四邊形EFGH是平行四邊形,…………(4分)=2=27.如圖,在三角形⊿ABC中,∠ACB=90o,AC=b,BC=a,P是⊿ABC所在平面外一點(diǎn),PB⊥AB,M是PA的中點(diǎn),A
2025-01-14 12:46
【總結(jié)】高中立體幾何知識(shí)點(diǎn)總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2025-06-24 15:17
【總結(jié)】......高中立體幾何學(xué)習(xí)記憶口訣學(xué)好立幾并不難,空間觀念最關(guān)鍵點(diǎn)線面體是一家,共筑立幾百花圓點(diǎn)在線面用屬于,線在面內(nèi)用包含四個(gè)公理是基礎(chǔ),推證演算巧周旋空間之中兩直線,平行相交和異面線線平行同方
2025-06-27 16:36
【總結(jié)】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,點(diǎn)E在棱CC1的延長(zhǎng)線上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2024-10-22 22:06
【總結(jié)】典型立體幾何題典型例題一例1設(shè)有四個(gè)命題:①底面是矩形的平行六面體是長(zhǎng)方體;②棱長(zhǎng)都相等的直四棱柱是正方體;③有兩條側(cè)棱都垂直于底面一邊的平行六面體是直平行六面體;④對(duì)角線相等的平行六面體是直平行六面體.其中真命題的個(gè)數(shù)是()A.1B.2C.3D.4分析:命題①是假命題.因?yàn)榈?/span>
2025-03-25 12:05
【總結(jié)】立體幾何垂直證明題常見(jiàn)模型及方法垂直轉(zhuǎn)化:線線垂直線面垂直面面垂直;基礎(chǔ)篇類型一:線線垂直證明(共面垂直、異面垂直)(1)共面垂直:實(shí)際上是平面內(nèi)的兩條直線的垂直(只需要同學(xué)們掌握以下幾種模型)等腰(等邊)三角形中的中線菱形(正方形)的對(duì)角線互相垂直勾股定理中的三角形1:1
2025-03-24 04:14
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。 (1)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)...
2024-11-15 05:28
【總結(jié)】各專業(yè)完整優(yōu)秀畢業(yè)論文設(shè)計(jì)圖紙存檔編號(hào)贛南師范學(xué)院學(xué)士學(xué)位論文高考中立體幾何的解法探索教學(xué)學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院屆
2025-08-24 08:52
【總結(jié)】第一篇:高中立體幾何中線面平行的常見(jiàn)方法 高中立體幾何證明平行的專題訓(xùn)練 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法: (1)通過(guò)“平移”。 (2)...
2024-11-16 23:32
【總結(jié)】10《高中復(fù)習(xí)資料》數(shù)學(xué)1.甲烷分子由一個(gè)碳原子和四個(gè)氫原子組成,其空間構(gòu)型為一正四面體,碳原子位于該正四面體的中心,個(gè)點(diǎn)(體積忽略不計(jì)),且已知碳原子與每個(gè)氫原子間的距離都為,則以四個(gè)氫原子為頂點(diǎn)的這個(gè)正四面體的體積為()A,B,C,D,2.夾在兩個(gè)平行平面之間的球,圓柱,圓錐在這兩個(gè)平面上的射影
2025-04-17 13:10