【導讀】思考:1、零點是不是點?除了用判定定理外,你還想到什么方法呢?想一想,下面的題如何解?對數(shù)增長,直線上升,指數(shù)爆炸!
【總結(jié)】方程的根和函數(shù)的零點思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2025-10-02 16:46
【總結(jié)】第1頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)熱點難點微專題八含參函數(shù)的零點問題第2頁熱點難點微專題八含參函數(shù)的零點問題專題綜述典型例題課后作業(yè)課時作業(yè)專題綜述含參函數(shù)的零點問題常以超越方程、分段函數(shù)等為載體,達到考察函數(shù)性質(zhì)、函
2025-08-05 09:41
【總結(jié)】函數(shù)的零點沈陽二中數(shù)學組思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關(guān)系?方程ax2+bx+c=0(a≠0)的根函數(shù)y=ax2+bx+c(a≠0)的圖象判別式△=b2-4ac△>0△=0△<0
2025-08-16 01:48
【總結(jié)】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的零點》課件自學反饋?)0()(22的圖象有何關(guān)系的根與二次函數(shù)二次方程???????acbxaxxfcbxaxxy31?xy21?xy21?4?1322???xxy442???xxy542???xxy重點評析(以a&
2025-11-02 06:00
【總結(jié)】二次函數(shù)零點問題【探究拓展】探究1:設(shè)分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設(shè)關(guān)于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負整數(shù)
2025-04-04 04:25
【總結(jié)】方程的根與函數(shù)的零點方程解法史話:數(shù)學家方臺納的故事1535年,在意大利有一條轟動一時的新聞:數(shù)學家奧羅挑戰(zhàn)數(shù)學家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經(jīng)
2025-10-31 04:14
【總結(jié)】0)(?xf)(xfy?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函數(shù)的圖象方程的實數(shù)根x1=-1,x2=3x1=x2=1無實數(shù)根(-1,0)、(3,0)(1,0)無交點x2-2x-
2025-11-15 13:41
【總結(jié)】近年高考試卷中的N型函數(shù)零點個數(shù)問題賞析近些年來,有不少的N型函數(shù)零點個數(shù)問題出現(xiàn)在不同年份、不同省區(qū)與全國的高考試卷中,這不能不成為高考的熱門話題和需要我們研究并指導高三學生進行科學備考的一個重點內(nèi)容。什么是N型函數(shù)零點個數(shù)問題呢,就是含參函數(shù)在其定義域內(nèi)連續(xù)可導,有兩個極值點、并將其定義域分成三個單調(diào)區(qū)間,通常是“增減增”或“減增減”,在此條件的基礎(chǔ)上,方程或的根的個數(shù)與參數(shù)取值范圍
2025-03-24 12:18
【總結(jié)】函數(shù)與方程一、考點聚焦1.函數(shù)零點的概念對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點,注意以下幾點:(1)函數(shù)的零點是一個實數(shù),當函數(shù)的自變量取這個實數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點也就是函數(shù)的圖象與x軸的交點的橫坐標。(3)一般我們只討論函數(shù)的實數(shù)零點。(4)求零點就是求方程的實數(shù)根。2、函數(shù)零點的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-16 02:09
【總結(jié)】函數(shù)零點的定義理解 函數(shù)的零點是函數(shù)圖象的一個重要的特征,同時也溝通了函數(shù)、方程、不等式以及算法等內(nèi)容,在分析解題思路、探求解題方法中起著重要的作用,因此要重視對函數(shù)零點的學習.下面就函數(shù)的零點判定中的幾個誤區(qū)進行剖析,希望對大家有所幫助.1.因"望文生義"而致誤 例1.函數(shù)的零點是 ?。ā 。。粒 。拢 。茫?, ?。模?,2錯解:C錯解剖析:錯誤的原
2025-06-18 23:35
【總結(jié)】與三角函數(shù)有關(guān)的零點問題1、【2015湖北】函數(shù)的零點個數(shù)為______.【答案】2【解析】因為=,所以函數(shù)的零點個數(shù)為函數(shù)與圖象的交點的個數(shù),函數(shù)與圖象如圖,由圖知,兩函數(shù)圖象有2個交點,所以函數(shù)有2個零點.【方法技巧歸納】利用函數(shù)圖象處理函數(shù)的零點(方程根)主要有兩種策略:(1)確定函數(shù)零點的個數(shù):利用圖象研究與軸的交點個數(shù)或轉(zhuǎn)化成兩個函數(shù)圖象的交點個數(shù)定性判斷;(2
2025-03-24 05:48
【總結(jié)】高三數(shù)學函數(shù)的圖像、零點一:選擇題f(x)=x2﹣2x+b在區(qū)間(2,4)內(nèi)有唯一零點,則b的取值范圍是( D?。〢、RB、(﹣∞,0)C、(﹣8,+∞)D、(﹣8,0),用二分法求方程在(1,3)內(nèi)近似解的過程中,f(1)>0,f()<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間( A?。〢、(1,)B、(,2)C、
2025-03-24 12:17
【總結(jié)】........函數(shù)與方程的思想方法函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關(guān)系入手,運用數(shù)學語言將問題中的條件轉(zhuǎn)化為數(shù)學模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解
2025-04-07 20:35
【總結(jié)】方程與函數(shù)的思想方法特級教師王建民解法3:設(shè),則∴3x2-5x-2=0∴x1=2或∵,∴,.∴⑥且c2=a2+b2⑦由⑥得a2=c2-c,⑧由⑦得b2=c⑨⑧,⑨代入④:得m=-
2025-08-16 01:14
【總結(jié)】電位零點選取的幾個問題1電位零點選取的幾個問題電磁學專題——電位零點選取的幾個問題2電位零點的選擇具有一定的任意性,如果選取適當,可以使問題簡化.但零點的選取往往又受到一些限制,如果選取不當,會導致空間的電位值失去意義.一.電位零點選取的任意性電位的定義:????00ppppldEu
2025-05-10 15:40