【總結(jié)】隨風(fēng)潛入夜?jié)櫸锛殶o聲(續(xù))李尚志中國科學(xué)技術(shù)大學(xué)2021/11/10數(shù)學(xué)實驗:幾何變換(x,y)?(x’,y’)?x’=f1(x,y),y’=f2(x,y)?曲線C:x=x(t),y=y(t)?曲線C’:x=f1(x(t),y(t)),
2024-10-19 01:08
【總結(jié)】第四章向量組的線性相關(guān)性§1向量組及線性表示目的要求(3)理解向量的線性組合、線性表示概念;(1)了解向量概念;(2)掌握向量加法、數(shù)乘運算法則;(4)掌握線性方程組與線性表示的關(guān)系.一、n維向量的概念nnn組稱為維向量,這個數(shù)稱為該向量的個分量,1
2025-01-19 15:16
【總結(jié)】化二次型為標(biāo)準(zhǔn)形只含有平方項的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-19 08:22
【總結(jié)】經(jīng)過初等行變換,行階梯形矩陣還可以進一步化為行最簡形矩陣,其特點是:非零行的第一個非零元為1,且這些非零元所在列的其它元素都為0.例如?????????????????000003100030110401015行最簡形矩陣對行階梯形矩陣再進行初等列變換,可得
2025-01-20 01:14
【總結(jié)】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時,計劃講授前五章,平時成績占20%,期末成績占80%。一、學(xué)習(xí)必要性二、課程特點1、線性代數(shù)
2025-01-19 10:48
【總結(jié)】第一節(jié)方陣的特征值與特征向量二次型的概念一、特征值與特征向量的性質(zhì)三、特征值與特征向量的求法二、特征值與特征向量四、小結(jié)、思考題特征值問題與二次型第六章二次型及其標(biāo)準(zhǔn)形的概念一、二次型及其標(biāo)準(zhǔn)形二、二次型的表示方法三、二次型的矩陣及秩的正交變換法四、化二次型為標(biāo)準(zhǔn)形五、小結(jié)、思考題
2025-08-15 20:37
【總結(jié)】分塊矩陣?分塊矩陣的概念?分塊矩陣的運算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個小矩陣這些小矩陣稱為的以子塊
2025-01-17 09:37
【總結(jié)】-1-xxdaishu1-2-第二章矩陣?yán)碚摶A(chǔ)§矩陣的秩與矩陣的等價標(biāo)準(zhǔn)形§可逆矩陣§n階(方陣的)行列式§矩陣的運算§分塊矩陣§線性方程組解的存在性定理·Cramer法則-
2025-01-19 19:05
【總結(jié)】說明:本次課件不作為課程內(nèi)容,沒有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡介】在計算機日益發(fā)展的今天,線性代數(shù)起著越來越重要的作用。線性代數(shù)起源于解線性方程組的問題,而利用矩陣來求解線性方程組的Gauss消元法至今仍是十分有效的計算機求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個重要工具,利用矩陣的
2025-02-22 00:04
【總結(jié)】馮媛難馮媛2,,.mnAkkkmknkAkAk???在矩陣中任取行列(),位于這些行列交叉處的個元素不改變它們在中所處的位置次序而得的階行列式,稱為矩陣的階子式一、矩陣秩的概念和性質(zhì)
2025-01-19 22:49
【總結(jié)】2021年11月10日8時25分§1矩陣的定義與運算目的要求(1)理解矩陣的定義;(2)掌握矩陣的基本運算及性質(zhì).2021年11月10日8時25分一、矩陣概念的引入???????????????????nnnnnnnnnnbxaxaxabxaxax
2024-10-16 21:34
【總結(jié)】課程名稱:應(yīng)用數(shù)學(xué)主講教師:黃榕波聯(lián)系電話:39352183郵箱:第一章行列式§2二階與三階行列式?二階行列式引入?三階行列式?小結(jié)思考題由四個數(shù)排成二行二列(橫排稱行、豎排稱列)的數(shù)表)4(22211211aaaa)5(4
2025-05-04 12:33
【總結(jié)】向量組的秩向量組的極大線性無關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標(biāo)基變換與坐標(biāo)變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無關(guān)向量組,定義簡稱為極大無關(guān)組或最大無關(guān)組.12,,,r???若向量組A的一個部分組A0:滿足(1)
2025-02-21 12:43
【總結(jié)】第三章矩陣的初等變換與線性方程組知識點回顧:克拉默法則結(jié)論1如果線性方程組(1)的系數(shù)行列式不等于零,則該線性方程組一定有解,而且解是唯一的.(P.24定理4)結(jié)論1′如果線性方程組無解或有兩個不同的解,則它的系數(shù)行列式必為零.(4')設(shè)11112211211222
2025-01-19 15:17
【總結(jié)】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32