【總結(jié)】第三節(jié)逆矩陣,111????aaaa,11EAAAA????則矩陣稱為的可逆矩陣或逆陣.A1?A一、概念的引入在數(shù)的運(yùn)算中,當(dāng)數(shù)時(shí),0?a有aa11??a其中為的倒數(shù),a(或稱的逆);在矩陣的運(yùn)算中,E
2024-10-04 19:42
【總結(jié)】化二次型為標(biāo)準(zhǔn)形只含有平方項(xiàng)的二次型nnfkykyky????2221122稱為二次型的標(biāo)準(zhǔn)形(或法式).例如??312322213214542,,xxxxxxxxf????都為二次型;??23222132144,,xxxxxxf???為二次型的標(biāo)準(zhǔn)形.??323121321,,x
2025-01-19 08:22
【總結(jié)】線性代數(shù)?主講:王娟?教材:線性代數(shù)(第三版),何蘇陽、呂巍然、王子亭主編,石油大學(xué)出版社?安排:共32學(xué)時(shí),計(jì)劃講授前五章,平時(shí)成績(jī)占20%,期末成績(jī)占80%。一、學(xué)習(xí)必要性二、課程特點(diǎn)1、線性代數(shù)
2025-01-19 10:48
【總結(jié)】分塊矩陣?分塊矩陣的概念?分塊矩陣的運(yùn)算?分塊矩陣求逆?求解矩陣方程,,,.AAAA?設(shè)是矩陣在矩陣的行之間加上一些橫(虛)線、在列之間加上一些豎(虛)線將矩陣形式上分成若干個(gè)小矩陣這些小矩陣稱為的以子塊
2025-01-17 09:37
【總結(jié)】說明:本次課件不作為課程內(nèi)容,沒有作業(yè),僅供參考!第1章矩陣與行列式【矩陣與行列式簡(jiǎn)介】在計(jì)算機(jī)日益發(fā)展的今天,線性代數(shù)起著越來越重要的作用。線性代數(shù)起源于解線性方程組的問題,而利用矩陣來求解線性方程組的Gauss消元法至今仍是十分有效的計(jì)算機(jī)求解線性方程組的方法。矩陣是數(shù)學(xué)研究和應(yīng)用的一個(gè)重要工具,利用矩陣的
2025-02-22 00:04
【總結(jié)】ProfLiubiyuMatrix(matrices)矩陣Acolumnvector行向量Asquarematrix方陣Arowvector列向量Adiagonalmatrix對(duì)角陣Anidentitymatrix單位陣Anuppertriangularmatrix上
2024-10-16 21:32
【總結(jié)】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項(xiàng)式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點(diǎn)重合時(shí),其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個(gè)二次齊次多項(xiàng)式.為了便于研究這個(gè)二次曲線的幾何性質(zhì),通過基變換(坐標(biāo)變換)
2024-10-19 01:08
【總結(jié)】第五章相似矩陣及二次型§1向量的內(nèi)積、長(zhǎng)度及正交性定義:設(shè)有n維向量令則稱[x,y]為向量x和y的內(nèi)積.1122[,]nnxyxyxyxy????向量的內(nèi)積1122,,nnxyxyxyxy????
2024-12-08 01:18
【總結(jié)】上頁下頁鈴結(jié)束返回首頁1線性代數(shù)上頁下頁鈴結(jié)束返回首頁2線性代數(shù)緒論上頁下頁鈴結(jié)束返回首頁3問題:1、什么是線性代數(shù)?2、為什么要學(xué)線性代數(shù)?3、怎么做才能學(xué)好線性代數(shù)?上頁下頁鈴結(jié)束返回首頁4一、什么是線性代數(shù)?(
2025-01-14 18:09
【總結(jié)】把個(gè)不同的元素排成一列,叫做這個(gè)元素的全排列(或排列).nn個(gè)不同的元素的所有排列的種數(shù)用表示,且.nnP!nPn?1全排列逆序數(shù)為奇數(shù)的排列稱為奇排列,逆序數(shù)為偶數(shù)的排列稱為偶排列.在一個(gè)排列中,若
2025-02-19 06:24
【總結(jié)】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32
【總結(jié)】一、選擇題1.n階行列式等于[].習(xí)題一(26頁)(A)1;(B)(-1)n-1;(C)0;(D)-1.B0111101111011111
2025-03-22 05:54
【總結(jié)】線性代數(shù)課程的性質(zhì)?線性代數(shù)是數(shù)學(xué)的一個(gè)分支,是數(shù)學(xué)的基礎(chǔ)理論課之一。它既是學(xué)習(xí)數(shù)學(xué)的必修課,也是學(xué)習(xí)其他專業(yè)課的必修課。內(nèi)容與任務(wù)?線性代數(shù)是研究有限維線性空間及其線性變換的基本理論,包括行列式、矩陣及矩陣的初等變換、線性方程組、向量組的線性相關(guān)性、相似矩陣及二次型等內(nèi)容。?
2025-02-21 15:46
【總結(jié)】1§矩陣§逆矩陣§初等矩陣§矩陣可逆的充分必要條件第二章矩陣代數(shù)2§矩陣矩陣的加法與數(shù)乘同型矩陣:兩個(gè)行數(shù)和列數(shù)均分別相等的矩陣.定義矩陣的相等:如果兩個(gè)矩陣是同型的(只有兩個(gè)同型的矩陣才能
2025-01-19 15:17
【總結(jié)】上頁下頁結(jié)束返回首頁1線性代數(shù)上頁下頁結(jié)束返回首頁2線性代數(shù)上頁下頁結(jié)束返回首頁3第一講n階行列式的定義上頁下頁結(jié)束返回首頁4第一章行列式在初等數(shù)學(xué)中,我們用代入消元法或加減消元法求解二元和三元線性方程組,可以
2025-01-19 15:16