【總結(jié)】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】......橢圓中的一組“定值”命題圓錐曲線中的有關(guān)“定值”問題,是高考命題的一個熱點,也是同學(xué)們學(xué)習(xí)中的一個難點。筆者在長時間的教學(xué)實踐中,以橢圓為載體,探索總結(jié)出了橢圓中一組“定值”的命題,當(dāng)然屬于瀚宇之探微,現(xiàn)與同學(xué)們
2025-06-22 15:52
【總結(jié)】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03
【總結(jié)】2020/12/131熱烈歡迎領(lǐng)導(dǎo)和專家蒞臨指導(dǎo)2020/12/132圓錐曲線中的最值問題?復(fù)習(xí)目標(biāo):?1.能根據(jù)變化中的幾何量的關(guān)系,建立目標(biāo)函數(shù),然后利用求函數(shù)最值的方法(如利用一次或二次函數(shù)的單調(diào)性,三角函數(shù)的值域,基本不等式,判別式等)求出最值.
2024-11-06 23:19
【總結(jié)】專題 圓錐曲線中的探索性問題1.(2016·課標(biāo)全國乙)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點M,交拋物線C:y2=2px(p0)于點P,M關(guān)于點P的對稱點為N,連接ON并延長交C于點H.(1)求;(2)除H以外,直線MH與C是否有其他公共點?說明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
2025-07-25 00:14
【總結(jié)】......2017屆高三第一輪復(fù)習(xí)專題訓(xùn)練之圓錐曲線中的定點定值問題的四種模型定點問題是常見的出題形式,化解這類問題的關(guān)鍵就是引進(jìn)變的參數(shù)表示直線方程、數(shù)量積、比例關(guān)系等,根據(jù)等式的恒成立、數(shù)式變換等尋找不受參數(shù)影響的
【總結(jié)】ChangchunUniversityofScienceandTechnology長春理工大學(xué)焊接分類焊接電弧的產(chǎn)生及連接法焊接藥皮的主要作用本章重點焊接接頭的三組成及組織性能焊接成形工藝基礎(chǔ)第十六章通過加熱或加壓或兩者并用,并且用(或不用)填充材料使零部件達(dá)到原子結(jié)合的永久性連接的
2025-01-15 02:01
【總結(jié)】圓錐曲線中的最值及范圍問題課時考點14高三數(shù)學(xué)備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關(guān)系.高考熱點:解析幾何與代數(shù)方法的綜合.熱點題型1:重要不等式求最值新題型分類例析熱點題型2:利用函數(shù)求最值熱點題型3:利用導(dǎo)數(shù)求最值熱點題型4:利用判別
2024-11-06 16:44
【總結(jié)】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢分析4.典型例題分析圓錐曲線背景下的最值與定值問題圓錐曲線背景下的最值與定值問題利用“坐標(biāo)法”來研究幾何問題是解析幾何的基本思想。對圓錐曲線背景下的最值與定值問題
2025-08-01 16:32
【總結(jié)】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考??碱}型之一,它是在題設(shè)條件下探索某個數(shù)學(xué)對象(點、線、數(shù)等),解法不一,我們在平時的教學(xué)中對這類題目訓(xùn)練較少,因而學(xué)生遇到這類題目時,往往感到無從下手,本文針對圓錐曲線中這類問題進(jìn)行了探討.二、經(jīng)驗分享解決探索性問題的注意事項探索性問題,先假設(shè)存在,推證滿足
【總結(jié)】圓錐曲線解答題中的定點和定值問題的解題策略 在圓錐曲線中有一類曲線,當(dāng)參數(shù)取不同值時,曲線本身性質(zhì)不變或形態(tài)發(fā)生變化時,其某些共同的性質(zhì)始終保持不變,,解題過程中應(yīng)注重解題策略,善于在動點的“變”中...
2025-04-03 03:30
【總結(jié)】專題八圓錐曲線背景下的最值與定值問題【考點搜索】【考點搜索】1.圓錐曲線中取值范圍問題通常從兩個途徑思考,一是建立函數(shù),用求值域的方法求范圍;二是建立不等式,通過解不等式求范圍.2.注意利用某些代數(shù)式的幾何特征求范圍問題(如斜率、兩點的距離等).【課前導(dǎo)引】
2024-11-18 22:38
【總結(jié)】圓錐曲線過定點問題一、小題自測1.無論取任何實數(shù),直線必經(jīng)過一個定點,則這個定點的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個常見結(jié)論:滿足一定條件的曲線上兩點連結(jié)所得的直線過定點或滿足一定條件的曲線過定點,這構(gòu)成了過定點問題。1、過定點模型:是圓錐曲線上的兩動點,是一定點,其
2025-03-25 00:04
【總結(jié)】圓錐曲線中的最值問題制作:黃石市實驗高中成冬英想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率Oyx變題OBAyxCDOyx
2024-11-09 23:29
【總結(jié)】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問題(一)想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率圓錐曲線中的最值問題(一)Oyx變題OBAyxCD
2024-11-09 08:49