【總結(jié)】函數(shù)的和、差、積的導(dǎo)數(shù)一、復(fù)習(xí)回顧::(1)(C為常數(shù));⑵⑶⑷:y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義,就是曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率.練一練:求下列函數(shù)的導(dǎo)數(shù)(1)y=100(2)y=x5
2025-10-25 20:18
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念及運(yùn)算第三單元導(dǎo)數(shù)及其應(yīng)用基礎(chǔ)梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為________.(2)平均變化率是曲線陡峭程度的“________”,或者說,曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2024-11-12 17:12
【總結(jié)】第一節(jié)導(dǎo)數(shù)的概念及運(yùn)算重點(diǎn)、難點(diǎn)回顧:1.平均變化率一般地,函數(shù)在區(qū)間上的平均變化率為.2.函數(shù)在處的導(dǎo)數(shù)設(shè)函數(shù)在區(qū)間上有定義,,當(dāng)無限趨近于時,比值,無限趨近于一個常數(shù),則稱在點(diǎn)處可導(dǎo),并稱該常數(shù)為函數(shù)在點(diǎn)處的,記作.3.導(dǎo)函數(shù)(導(dǎo)數(shù))若對于區(qū)間內(nèi)任一點(diǎn)都可導(dǎo),則在各點(diǎn)的導(dǎo)數(shù)也隨著自變量的變化而
2025-08-17 11:25
【總結(jié)】高三數(shù)學(xué)導(dǎo)數(shù)與積分經(jīng)典例題以及答案一.教學(xué)內(nèi)容:導(dǎo)數(shù)與積分二.重點(diǎn)、難點(diǎn):1.導(dǎo)數(shù)公式: 2.運(yùn)算公式3.切線,過P()為切點(diǎn)的的切線,4.單調(diào)區(qū)間不等式,解為的增區(qū)間,解為的減區(qū)間。5.極值(1)時,,時,∴為極大值(2)時,時,∴為的極小值。
2025-06-18 08:53
【總結(jié)】返回后頁前頁§8微分中值定理與導(dǎo)數(shù)的應(yīng)用二、典型例題一、內(nèi)容提要習(xí)題課返回后頁前頁一、內(nèi)容提要1.理解羅爾(Rolle)定理和拉格朗日(Lagrange)定理.2.了解柯西(Cauchy)定理和泰勒(Taylor)定理.3.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)
2025-04-29 06:27
【總結(jié)】1.平均變化率一基本概念問題2高臺跳水在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系)(2????ttth如果用運(yùn)動員在某段時間內(nèi)的平均速度描述其運(yùn)動狀態(tài),那么:v在0≤t≤,在1≤t≤2
2025-10-09 14:03
【總結(jié)】函數(shù)與導(dǎo)數(shù)1.已知函數(shù),其中.(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;(Ⅱ)當(dāng)時,求的單調(diào)區(qū)間;(Ⅲ)證明:對任意的在區(qū)間內(nèi)均存在零點(diǎn).【解析】(19)本小題主要考查導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、曲線的切線方程、函數(shù)的零點(diǎn)、解不等式等基礎(chǔ)知識,考查運(yùn)算能力及分類討論的思想方法,滿分14分。(Ⅰ)解:當(dāng)時, 所以曲線在點(diǎn)處的切線方程為
2025-06-18 20:37
【總結(jié)】基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則基本初等函數(shù)的導(dǎo)數(shù)公式:11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'(
2025-08-16 02:13
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-17 15:21
2024-11-09 23:28
【總結(jié)】1第十二章極限與導(dǎo)數(shù)第講2考點(diǎn)搜索●導(dǎo)數(shù)的概念及其幾何意義●幾種常見函數(shù)的導(dǎo)數(shù)公式●導(dǎo)數(shù)的四則運(yùn)算法則,復(fù)合函數(shù)的求導(dǎo)法則高考猜想,求函數(shù)的導(dǎo)數(shù)...3?1.對于函數(shù)y=f(x),記Δy=f(x0+Δx)-f(x0),如果當(dāng)Δ
2025-08-11 14:47
【總結(jié)】高階導(dǎo)數(shù)1、顯函數(shù)的高階導(dǎo)數(shù)(2-n階)2、隱函數(shù)和參數(shù)方程的2階導(dǎo)數(shù)一、顯函數(shù)高階導(dǎo)數(shù)的定義定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點(diǎn)為函數(shù)則稱存在即處可導(dǎo)在點(diǎn)的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxfxxfxfx??????????????記作
2025-05-13 06:01
【總結(jié)】精品資源高三數(shù)學(xué)第一輪復(fù)習(xí)講義(74)導(dǎo)數(shù)的概念及運(yùn)算一.復(fù)習(xí)目標(biāo):理解導(dǎo)數(shù)的概念和導(dǎo)數(shù)的幾何意義,會求簡單的函數(shù)的導(dǎo)數(shù)和曲線在一點(diǎn)處的切線方程.二.知識要點(diǎn):1.導(dǎo)數(shù)的概念:
2025-04-17 00:39
【總結(jié)】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-17 23:31
【總結(jié)】甲和乙投入相同資金經(jīng)營同一商品,甲用1年時間掙到2萬元,乙用5個月時間掙到1萬元。從這樣的數(shù)據(jù)看來,甲、乙兩人誰的經(jīng)營成果更好?情境一:情境二:如右圖所示,向高為10cm的杯子等速注水,3分鐘注滿。若水深h是關(guān)于注水時間t的函數(shù),則下面兩個圖象哪一個可以表示上述函數(shù)?Ot/m
2024-11-17 15:20