【總結(jié)】b不同在任何一個平面內(nèi)的兩條直線叫做異面直線。異面直線的定義:相交直線平行直線異面直線空間兩直線的位置關(guān)系上節(jié)回顧:公理4:在空間平行于同一條直線的兩條直線互相平行.異面直線的求法:一作(找)二證三求空間中,如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補.等角定理:異面直
2025-04-30 04:27
【總結(jié)】復數(shù)的向量表示任何一個復數(shù)z=a+bi,都可以由一個有序?qū)崝?shù)對(a,b)唯一確定;有序?qū)崝?shù)對(a,b)與平面直角坐標系中的點是一一對應(yīng)的.復數(shù)z=a+bi可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸.xy
2025-08-05 04:54
【總結(jié)】問題提出,點與平面分別有哪幾種位置關(guān)系?空間兩直線有哪幾種位置關(guān)系?、線、面位置關(guān)系而言,還有哪幾種類型有待分析?探究(一)直線與平面之間的位置關(guān)系思考1:一支筆所在的直線與一個作業(yè)本所在的平面,可能有哪幾種位置關(guān)系?思考2:對于一條直線和一個平面,就其公共點個數(shù)來分類有哪幾種可能?思考3:如圖,
2024-11-11 00:19
【總結(jié)】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長度、角度和垂直的
2025-05-19 17:09
【總結(jié)】1212112212,,,,,,,,,,.nnnnnaaakkkakakakaaaa????定義設(shè)是一組向量,是一組實數(shù),則所組成的向量叫做向量組的一個線性組合四共線、共面的向量組下一頁返回
2025-07-22 21:21
【總結(jié)】平面向量的正交分解及坐標表示一、向量的分解1e2eaADFE量的分解、通過幾何畫板研究向1的分解圖線性和與為、請畫212eea1:,1????μλDCBACμABλAD共線當且僅當、、三點則、如圖令例ABCD已知O,A,B是平面上的三個點,直線AB上有一點C,滿足
2025-07-25 06:26
【總結(jié)】永春三中王門鋅平面向量數(shù)量積的坐標表示1、向量加法三角形法則a+b=(x1+x2,y1+y2)2、向量減法三角形法則a–b=(x1–x2,y1–y2)3、實數(shù)與向量的積
2024-11-10 03:15
【總結(jié)】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2024-11-09 06:28
【總結(jié)】平面向量的基本定理及坐標表示平面向量共線的坐標表示課標點擊平面向量共線的坐標表示預習導學典例精析課堂導練課堂小結(jié)1.理解向量共線定理.2.掌握兩個向量平行(共線)的坐標表示和會應(yīng)用其求解有關(guān)兩向量
2025-07-25 14:48
【總結(jié)】置關(guān)系(2)二層樓房示意圖第一、二層的底面α和β無論怎樣延伸都沒有公共點;一、兩個平面的位置關(guān)系前、后兩面房頂γ和δ只有一條交線AB.(1)兩個平面平行如果兩個平面沒有公共點,我們就說這兩個平面互相平行.一、兩個平面的位置關(guān)系
2025-05-12 12:02
【總結(jié)】 《平面的表示方法》評課稿 朱**老師今天所上的是“平面的表示方法”一課,內(nèi)容并不復雜,但它奠定了立體幾何的理論基礎(chǔ),是學生初步學習立體幾何知識的一個載體,也是形成數(shù)學思想方法的重要一課。...
2025-04-03 05:12
【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件26《平面向量的坐標表示與運算》?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析平面向量的坐標表示要點·疑點·考點
2024-11-10 00:27
【總結(jié)】平面向量的坐標運算平面向量的坐標表示與運算一、提問:1、什么叫向量?一般用什么表示?2、有向線段的三個要素是什么?3、什么叫向量共線定理?4、什么叫平面向量基本定理?如圖1,在直角坐標系內(nèi),我們分別取與x軸、y軸方向相同的兩個單位向量i、j作為基底,任何一個向量a,由平面向量基本定理知,有且只
【總結(jié)】《平面向量共線的坐標表示》說課稿【教材分析】(一)地位和作用本節(jié)內(nèi)容在教材中啟著向量坐標運算延伸的作用,它是在學生對平面向量的基本定理有了充分的認識和正確的應(yīng)用后產(chǎn)生的,平面向量共線的坐標表示則為用“數(shù)”的運算處理“形”的問題搭建了橋梁,同時也為定比分點坐標公式和中點坐標公式的推導奠定了基礎(chǔ);向量共線的坐標表示,對立體幾何教材也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)地代數(shù)化
2025-08-07 15:05
【總結(jié)】平面向量的正交分解及坐標表示復習平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使a=λ1e1+λ2e2(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不唯一,關(guān)鍵
2025-07-24 04:29