【總結】空間角專題復習●知識梳理一、異面直線所成的角及求法(1)定義:在空間任意取一點,過該點分別作兩異面直線的平行線所成的銳角或直角稱為兩異面直線所成的角.(2)取值范圍:若θ是異面直線a和b所成的角,則其取值范圍是θ∈(0,],當θ=時,稱異面直線a和b垂直,記為a⊥b.(3)求法:平移法:將兩異面直線中的一條或兩條平移至某特殊點后,構造三角形,通過解該三角形而求其大??;
2025-04-17 01:12
【總結】第九章立體幾何9.3直線與直線、直線與平面、平面與平面所成的角創(chuàng)設情境興趣導入9.3直線與直線、直線與平面、平面與平面所成的角1BC在如圖所示的長方體中,直線和直線AD是異面直線,度量1CBC?1DAD?和,發(fā)現它們是相等的.1BC如果在直線AB上任選點P,那么過點P分別作直線與直線AD1CBC?
2024-11-17 07:29
【總結】滁州市應用技術學校數學教研組謝懷年一、復習:?空間的兩條直線的位置關系1.兩條直線平行2.兩條直線相交3.兩條直線異面abAababβA共面異面?異面直線的畫法:平面襯托法ABab我們規(guī)定:兩條平行
2025-08-05 00:42
【總結】-利用向量解決空間的距離問題(四)向量法求空間距離的求解方法:兩點間的距離、點到直線的距離、點到平面的距離、直線到平面的距離、平行平面的距離、異面直線間的距離.其中直線到平面的距離、平行平面的距離都可以轉化點到平面的距離.:設A(x1,y1,z1),B(x2,y2,z3),則222121212()()(
2025-08-05 04:08
【總結】第二課時直線和平面所成的角直線與平面垂直的判定問題提出定理分別是什么?直線和平面垂直的定義:如果一條直線與平面內的任意一條直線都垂直,則稱這條直線與這個平面垂直.直線和平面垂直的定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于
2025-07-24 04:30
【總結】立體幾何立體幾何立體幾何立體幾何兩個平面成一定夾角的實例:打開的筆記本電腦;打開的課本等等.?一.二面角平面內的一條直線把這個平面分成兩個部分,其中的每一部分都分別叫做一個半平面.從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角.?AB
2025-07-25 17:06
【總結】直線與平面所成的角與二面角(二)-——二面角與平面和平面的垂直關系1二面角及二面角的平面角平面的一條直線把平面分為兩部分,其中的每一部分都叫做一個半平面。從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。(1)半平面——(2)二面角——llαl
2025-08-04 10:03
【總結】成才之路·數學路漫漫其修遠兮吾將上下而求索人教A版·選修2-1空間向量與立體幾何第三章立體幾何中的向量方法第1課時直線的方向向量和平面的法向量第三章典例探究學案2鞏固提高學案3自主預習學案1自主預習學案?1.理解直線的方向向量,平面的法向量.
2025-10-31 05:44
【總結】吉林省松原市實驗高級中學王楓1、斜線在平面內的射影(1)點在平面內的射影過一點向平面引垂線,垂足叫做這點在這個平面內的射影.P?Q(2)平面的斜線、斜足、點到平面的斜線段一條直線和一個平面相交,但不和這個平面垂直時,這條直線叫做平面的斜線,斜線和平面的交點叫斜足.從平面外一點向平面引斜線,這點與斜足間
2025-07-24 03:27
【總結】吉首大學畢業(yè)論文求利用函數求極限的方法畢業(yè)論文目錄摘要…………………………………………………………………………………...….....1Abstract…………………………………………………………………………………...........11引言……………………………………………….……………………………….........22求函數極限的方法…
2025-06-22 16:00
【總結】第九章直線、平面、簡單幾何體第講(第一課時)考點搜索●直線和平面所成的角的概念與計算●二面角、二面角的平面角的概念,平面角大小的計算高考高考猜想1.利用幾何或向量方法求直線和平面所成的角、二面角的平面角.2.轉化角的條件,探求角的范圍.1.一個平面的斜線和它在這個平面內的_
2025-05-10 21:38
【總結】空間角專題復習●知識梳理一、異面直線所成的角及求法(1)定義:在空間任意取一點,過該點分別作兩異面直線的平行線所成的銳角或直角稱為兩異面直線所成的角.(2)取值范圍:若θ是異面直線a和b所成的角,則其取值范圍是θ∈(0,],當θ=時,稱異面直線a和b垂直,記為a⊥b.(3)求法:平移法:將兩異面直線中的一條或兩條平移至某特殊點后,構造三角形,通過解該三角形而求其大?。?/span>
2025-04-16 23:16
【總結】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉化為二面角的兩個面的
2025-08-05 10:54
【總結】立體幾何立體幾何立體幾何立體幾何平面與平面所成的角兩個平面成一定夾角的實例:打開的筆記本電腦;打開的課本等等.?一.二面角平面內的一條直線把這個平面分成兩個部分,其中的每一部分都分別叫做一個半平面.從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角.
【總結】回顧知識:空間中一條直線與平面有哪幾種位置關系?(1)直線在平面內,(2)直線與平面平行,(3)直線與平面相交知識探究(一):直線與平面垂直的概念(垂直)大漠孤煙直ABABABABABABABAB