【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線的簡單應(yīng)用。二.命題走向近年來圓錐曲線在高考中比較穩(wěn)定,解答題往往以中
2025-03-25 06:47
【總結(jié)】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點P,過點P作X軸的垂線段PD,D為垂足.當(dāng)點P在圓上運動時,線段PD的中點M的軌跡是什么?變式1:設(shè)點P是圓上的任一點,定點D的坐標(biāo)為(8,0).當(dāng)點P在圓上運動時,求線段PD的中點M的軌跡方程.解:設(shè)點M的坐標(biāo)為,點P的坐標(biāo)為,則,.即,.
2025-08-04 10:24
【總結(jié)】圓錐曲線與方程習(xí)題圓錐曲線與方程練習(xí)題及答案一、選擇題【共12道小題】1、以的焦點為頂點,頂點為焦點的橢圓方程為(?)A.???????????B.????
2025-08-04 14:53
【總結(jié)】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計設(shè)計者姓名郭曉泉設(shè)計者單位華亭縣第二中學(xué)
2025-05-12 01:30
【總結(jié)】2009屆廣東省(課改區(qū))各地市期末數(shù)學(xué)分類試題《直線與圓及其方程》、《圓錐曲線與方程》部分《直線與圓及其方程》、《圓錐曲線與方程》一、選擇題1.【廣東韶關(guān)·文】BA.1B.C.D.2.【潮州·理科】8、(文科10)已知點是圓:內(nèi)一點,直線是以為中點的弦所在的直線,若直線的
2025-07-22 19:44
【總結(jié)】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【總結(jié)】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2025-07-20 00:18
【總結(jié)】......§知識要點一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點,焦點在x軸上:.ii.中心在原點,焦點在軸上:.②一般方程:.③橢
2025-06-22 23:13
【總結(jié)】精品資源第八章圓錐曲線的方程1、已知F1、F2是雙曲線的兩焦點,以線段F1F2為邊作正三角形,若雙曲線恰好平分正三角形的另兩邊,則雙曲線的離心率是() A、 B、 C、 D、MxyNF21、D【思路分析】法一:F2(c,0),M(0,c)依MF2中點N()在雙曲線上,得=1即=1=1.注意到e1,解
2025-06-29 16:44
【總結(jié)】運用聯(lián)想探究圓錐曲線的切線方程現(xiàn)行人教版統(tǒng)編教材高中數(shù)學(xué)第二冊上、第75頁例題2,給出了經(jīng)過圓上一點的切線方程為;當(dāng)在圓外時,過點引切線有且只有兩條,過兩切點的弦所在直線方程為。那么,在圓錐曲線中,又將如何?我們不妨進(jìn)行幾個聯(lián)想。聯(lián)想一:(1)過橢圓上一點切線方程為;(2)當(dāng)在橢圓的外部時,過引切線有兩條,過兩切點的弦所在直線方程為:證明:(1)的兩邊對求導(dǎo),得,得,由
2025-06-24 04:24
【總結(jié)】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結(jié)】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動點坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-07-26 09:19
【總結(jié)】......圓錐曲線的性質(zhì)一、基礎(chǔ)知識(一)橢圓:1、定義和標(biāo)準(zhǔn)方程:(1)平面上到兩個定點的距離和為定值(定值大于)的點的軌跡稱為橢圓,其中稱為橢圓的焦點,稱為橢圓的焦距(2)標(biāo)準(zhǔn)方程:①焦點在軸上的橢
2025-06-22 16:01
【總結(jié)】精品資源普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座33)—圓錐曲線方程及性質(zhì)一.課標(biāo)要求:1.了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用;2.經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標(biāo)準(zhǔn)方程、幾何圖形及簡單性質(zhì);3.了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道雙曲線的有關(guān)性質(zhì)。二.命題
2025-06-29 16:30
【總結(jié)】《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁例2)如圖,在圓上任取一點P,過點P作X軸的垂線段PD,D為垂足.當(dāng)點P在圓上運動時,線段PD的中點M的軌跡是什么?變式1:設(shè)點P是圓上的任一點,定點D的坐標(biāo)為(8,0).當(dāng)點P在圓上運動時,求線段PD的中點M的軌跡方程.解:設(shè)點M的坐標(biāo)為,點P的坐標(biāo)為,則,.即,.
2025-07-25 23:55