【導(dǎo)讀】思想方法分析、解決一些涉及不等式關(guān)系的問題.題型1、不等式在方程、函數(shù)中的應(yīng)用。的最大值4,最小值-1,求常數(shù)a,b,的值。有解,求實(shí)數(shù)a的取值范圍。寸,能使宣傳畫所用紙張面積最?。孔钪禃r,一定要檢驗等號能否成立。
【總結(jié)】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進(jìn)電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設(shè)第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均價格,然后利用不等式知識論證。解:
2024-11-06 21:53
【總結(jié)】不等式的證明(4)換元法復(fù)習(xí):分析法:一、三角換元注意點(diǎn):角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習(xí)小結(jié):
2024-11-11 02:53
【總結(jié)】復(fù)習(xí)目標(biāo):掌握不等式的相關(guān)知識在求函數(shù)定義域、值域、單調(diào)性的判斷與證明、一元二次方程根的討論與應(yīng)用1、求下列函數(shù)的定義域:(1)y=(2)y=log(x2-2x-3)(3)y=+lg(3-x)2、求下列函數(shù)的值域:(1)y=2-3x
2024-11-07 02:27
【總結(jié)】一元一次不等式組的應(yīng)用宇宙之大粒子之微火箭之速化工之巧地球之變生物之謎日用之繁數(shù)學(xué)無處不在------華羅庚,課題引入某班級在迎世博知識競答中,共設(shè)置了20道問題,評分標(biāo)準(zhǔn)為:對于每一道
2024-11-21 23:37
【總結(jié)】主講老師:習(xí)題講評復(fù)習(xí)幾個重要的不等式:復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????baabbaRba復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????ba
2024-11-09 04:45
【總結(jié)】制作:皖黃山市徽州區(qū)第一學(xué)凌榮壽例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進(jìn)電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設(shè)第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均
2024-11-18 01:29
【總結(jié)】不等式不等式不等式不等式不等式的應(yīng)用.不等式的應(yīng)用性質(zhì)1(傳遞性)如果ab,bc,則ac.性質(zhì)2(加法法則)如果ab,那么a+cb+c.性質(zhì)3(乘法法則)如果a&
2024-11-21 05:33
【總結(jié)】
2024-11-12 17:26
【總結(jié)】第四節(jié)不等式的綜合應(yīng)用基礎(chǔ)達(dá)標(biāo)1.(必修5P94第4題改編)已知(ax-1)(x-1)>0的解集是{x|x<1或x>3},則a的值為________.解析:由不等式解集是{x|x<1或x>3},可知=3,所以a=1.31a2.已知0<a<1,1log2l
2024-11-12 18:21
【總結(jié)】高三天天練試卷(不等式)1班一、選擇題1.若,則下列不等式①a+b<ab;②|a|>|b|;③a<b;④中,正確的不等式有()A.0個B.1個C.2個D.3個2.若a,b,c>0,且a2+2ab+2ac+4bc=12,則a+b+c的最小值是()A.B.3C.2D.3.不等式(a﹣2)x2+2(a﹣2)
2025-06-07 23:23
【總結(jié)】1不等式(山東省鄆城第一中學(xué)274700)張鐘誼不等式是中學(xué)數(shù)學(xué)的重點(diǎn)內(nèi)容,是學(xué)習(xí)數(shù)學(xué)其它各部分知識所必不可少的工具,也是歷年高考考查的重點(diǎn)內(nèi)容。復(fù)習(xí)提要因為不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式是高考考試內(nèi)容,因此必須:(1)掌握不等式的性質(zhì)及其證明,掌握證明不等式的幾種常
2024-11-11 06:59
【總結(jié)】高三天天練試卷(不等式)1班一、選擇題1.若110ab??,則下列不等式①a+b<ab;②|a|>|b|;③a<b;④2baab??中,正確的不等式有()A.0個B.1個C.2個D.3個2.若a,b,c>0,且a2+2ab+2ac+4bc=12,則a
2025-07-21 18:28
【總結(jié)】不等式的解題歸納第一部分含參數(shù)不等式的解法例1解關(guān)于x的不等式例2.解關(guān)于x的不等式:(x-+12)(x+a)0的解集為{x︱-3x5},求a、b的值.例5已知關(guān)于x的二次不等式:a+(a-1)x+
2025-04-04 05:02
【總結(jié)】第一篇:57均值不等式與不等式的實(shí)際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實(shí)際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01
【總結(jié)】第二十二講不等式的應(yīng)用100件某種商店,為使這批貨物盡快脫手,該商店采取了如下銷售方案,先將價格提高到原來的,再作三次降價處理:第一次降價30%,標(biāo)出“虧本價”;第二次降價30%,標(biāo)出“破產(chǎn)價”第三次降價30%,標(biāo)出“跳樓價”.三次降價處理銷售結(jié)果如下表:降價次數(shù)一二三銷售件數(shù)1040一搶而光
2024-11-19 12:04