【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件42《不等式的應用》一、內(nèi)容歸納1知識精講:在前面幾節(jié)課學習的不等式的性質(zhì)、證明和解不等式的基礎上運用不等式的的知識和思想方法分析、解決一些涉及不等式關系的問題.2重點難點:善于將一個表面上看來并非是不等式的問題借助不等式的有關部門知識來解決.3思維方式:合理轉(zhuǎn)化;正
2024-11-11 08:50
【總結(jié)】:2baab??復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復習引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】新課標人教版課件系列《高中數(shù)學》必修5《不等式的性質(zhì)》審校:王偉教學目標?1、掌握不等式的性質(zhì)及其推論,并能證明這些結(jié)論。?2、進一步鞏固不等式性質(zhì)定理,并能應用性質(zhì)解決有關問題。?教學重點:?1、不等式的性質(zhì)及證明。?2、不等式的性質(zhì)及應用性質(zhì)1:如果ab
2024-11-11 05:50
【總結(jié)】第八節(jié)基本不等式考綱點擊.(小)值問題.熱點提示,兼顧考查代數(shù)式變形、化簡能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識結(jié)合在一起來考查基本不等式,證明不會太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號成立的條件
2024-11-09 04:10
【總結(jié)】第一篇:巧用數(shù)學歸納法證明不等式 巧用數(shù)學歸納法證明不等式 數(shù)學歸納法是解決與正整數(shù)有關的命題的數(shù)學方法,它是通過有限個步驟的推理,證明n取無限個正整數(shù)的情形。 第一步是證明n取第一個值n0時命...
2024-11-06 00:31
【總結(jié)】第一篇:數(shù)學歸納法證明不等式教案 § 學習目標:、數(shù)學歸納法證明基本步驟; 、難點:、知識情景: (相當于多米諾骨牌),我們可以采用下面方法來證明其正確性: (即n=no時命題成立)(歸納奠...
2025-10-20 04:04
【總結(jié)】第一篇:不等式證明,均值不等式 1、設a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】第一篇:高三數(shù)學專題復習——數(shù)列不等式(放縮法) 高三數(shù)學專題復習——數(shù)列不等式(放縮法) 教學目標:學會利用放縮法證明數(shù)列相關的不等式問題教學重點:數(shù)列的構造及求和教學難點:放縮法的應用 證明...
2025-10-20 07:04
【總結(jié)】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對照證題目標進行合情合理的放大和縮小的過程,在使用放縮法證題時要注意放和縮的“度”,否則就不能...
2025-10-19 05:02
【總結(jié)】第一篇:構造法證明函數(shù)不等式 構造法證明函數(shù)不等式 1、利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點. 2、解題技巧是構造...
2025-10-18 20:30
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構造一個函數(shù)然后做差求導,確定單調(diào)性??墒沁€是一點思路...
2025-10-21 22:00
【總結(jié)】第一篇:高三數(shù)學均值不等式 3eud教育網(wǎng)://百萬教學資源,完全免費,無須注冊,天天更新! 均值不等式教案 教學目標: 教學重點: 推導并掌握兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)...
2024-11-06 22:00
【總結(jié)】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設數(shù)列{an}的前n項的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項a1與通項an...
2025-10-19 04:58