freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

(精品)正余弦定理的教學資料-資料下載頁

2025-08-04 10:22本頁面
  

【正文】 解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個解,但作為有關(guān)現(xiàn)實生活的應(yīng)用題,必須檢驗上述所求的解是否符合實際意義,從而得出實際問題的解Ⅲ.課堂練習課本第18頁練習Ⅳ.課時小結(jié)解三角形的應(yīng)用題時,通常會遇到兩種情況:(1)已知量與未知量全部集中在一個三角形中,依次利用正弦定理或余弦定理解之。(2)已知量與未知量涉及兩個或幾個三角形,這時需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。Ⅴ.課后作業(yè)課本第23頁練習第11題我艦在敵島A南偏西相距12海里的B處,發(fā)現(xiàn)敵艦正由島沿北偏西的方向以10海里/、沿什么方向航行才能用2小時追上敵艦?(角度用反三角函數(shù)表示)●板書設(shè)計●授后記課題: 167。授課類型:新授課●教學目標知識與技能:能夠運用正弦定理、余弦定理等知識和方法進一步解決有關(guān)三角形的問題, 掌握三角形的面積公式的簡單推導和應(yīng)用過程與方法:本節(jié)課補充了三角形新的面積公式,巧妙設(shè)疑,引導學生證明,同時總結(jié)出該公式的特點,循序漸進地具體運用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學知識的生動運用,教師要放手讓學生摸索,使學生在具體的論證中靈活把握正弦定理和余弦定理的特點,能不拘一格,一題多解。只要學生自行掌握了兩定理的特點,就能很快開闊思維,有利地進一步突破難點。情感態(tài)度與價值觀:讓學生進一步鞏固所學的知識,加深對所學定理的理解,提高創(chuàng)新能力;進一步培養(yǎng)學生研究和發(fā)現(xiàn)能力,讓學生在探究中體驗愉悅的成功體驗●教學重點推導三角形的面積公式并解決簡單的相關(guān)題目●教學難點利用正弦定理、余弦定理來求證簡單的證明題●教學過程Ⅰ.課題導入[創(chuàng)設(shè)情境]師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學習它的另一個表達公式。在ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆可篽=bsinC=csinBh=csinA=asinC h=asinB=bsinaA師:根據(jù)以前學過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導出下面的三角形面積公式,S=absinC,大家能推出其它的幾個公式嗎?生:同理可得,S=bcsinA, S=acsinB師:除了知道某條邊和該邊上的高可求出三角形的面積外,知道哪些條件也可求出三角形的面積呢?生:如能知道三角形的任意兩邊以及它們夾角的正弦即可求解Ⅱ.講授新課[范例講解]例在ABC中,根據(jù)下列條件,求三角形的面積S()(1)已知a=,c=,B=。(2)已知B=,C=,b=。(3)已知三邊的長分別為a=,b=,c=分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。解:(1)應(yīng)用S=acsinB,得 S=≈(cm)(2)根據(jù)正弦定理, = c = S = bcsinA = bA = 180(B + C)= 180(+ )= S = ≈(cm)(3)根據(jù)余弦定理的推論,得cosB = = ≈sinB = ≈≈應(yīng)用S=acsinB,得S ≈≈(cm)例如圖,在某市進行城市環(huán)境建設(shè)中,要把一個三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個三角形區(qū)域的三條邊長分別為68m,88m,127m,這個區(qū)域的面積是多少?()?師:你能把這一實際問題化歸為一道數(shù)學題目嗎?生:本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。由學生解答,老師巡視并對學生解答進行講評小結(jié)。解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,cosB= =≈sinB=應(yīng)用S=acsinB S ≈≈(m)答:。例在ABC中,求證:(1)(2)++=2(bccosA+cacosB+abcosC)分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點,聯(lián)想到用正弦定理來證明證明:(1)根據(jù)正弦定理,可設(shè) = = = k顯然 k0,所以 左邊= ==右邊(2)根據(jù)余弦定理的推論, 右邊=2(bc+ca+ab) =(b+c a)+(c+ab)+(a+bc)=a+b+c=左邊變式練習1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個數(shù)。答案:a=6,S=9。a=12,S=18變式練習2:判斷滿足下列條件的三角形形狀,(1) acosA = bcosB(2) sinC =提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(1) 師:大家嘗試分別用兩個定理進行證明。生1:(余弦定理)得a=bc=根據(jù)邊的關(guān)系易得是等腰三角形或直角三角形生2:(正弦定理)得sinAcosA=sinBcosB,sin2A=sin2B,2A=2B,A=B根據(jù)邊的關(guān)系易得是等腰三角形師:根據(jù)該同學的做法,得到的只有一種情況,而第一位同學的做法有兩種,請大家思考,誰的正確呢?生:第一位同學的正確。第二位同學遺漏了另一種情況,因為sin2A=sin2B,有可能推出2A與2B兩個角互補,即2A+2B=180,A+B=90(2)(解略)直角三角形Ⅲ.課堂練習課本第21頁練習第2題Ⅳ.課時小結(jié)利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。Ⅴ.課后作業(yè)課本第23頁練習第1115題●板書設(shè)計●授后記 23地址:中山市小欖鎮(zhèn)文化路92號二樓 電話:(0760)22558082地址:中山市古鎮(zhèn)鎮(zhèn)海洲海興路60號二樓 電話:(0760)89869108
點擊復制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1