【導讀】如何求曲線上一點的切線?直線PQ就是P點處的切線.)斜率無限趨限趨近點P處切,時0無限趨限當(PQkx?因此,切線方程為y-2=2(x-1),即y=2x.
【總結】《求曲線的方程》引例:在美麗的南沙群島中,甲島與乙島相距8海里,一艘軍艦在海上巡邏,巡邏過程中,從軍艦上看甲乙兩島,保持視角為直角,你認為軍艦巡邏的路線應是怎樣的曲線,你能為它寫出一個方程嗎?例1、設A、B兩點的坐標是(-1,-1)和(2,3),求線段AB的垂直平分線的方程?xyoAB思考:①
2024-11-09 08:46
【總結】2020屆高考數(shù)學復習強化雙基系列課件79《圓錐曲線-圓錐曲線的應用》圓錐曲線定義應用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構成的三角形,常用第一定義結合正余弦定理;·涉及焦點、準線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2024-11-11 08:49
【總結】圓錐曲線的應用高三備課組一、基本知識概要:解析幾何在日常生活中應用廣泛,如何把實際問題轉(zhuǎn)化為數(shù)學問題是解決應用題的關鍵,而建立數(shù)學模型是實現(xiàn)應用問題向數(shù)學問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應用,說明數(shù)學建模的方法,理解函數(shù)與方程、等價轉(zhuǎn)化、分類討論等數(shù)學思想。二、例題:例題1:設有一顆慧星沿一橢圓軌道
2024-11-09 08:48
【總結】《雙曲線的幾何性質(zhì)》教學目標?(對稱性、范圍、頂點、離心率);?.三.教學重、難點:目標1;數(shù)形結合思想的貫徹,運用曲線方程研究幾何性質(zhì).2、對稱性雙曲線的幾何性質(zhì))0,0(12222????ba
2024-11-10 00:28
【總結】2020屆高考數(shù)學二輪復習系列課件24《圓錐曲線》圓錐曲線與平面向量考試內(nèi)容:橢圓、雙曲線、拋物線的定義、標準方程、幾何性質(zhì)以及直線與圓錐曲線的位置關系,平面向量的概念,向量的坐標運算.高考熱點:圓錐曲線與平面向量的綜合.熱點題型1:直線與圓錐曲線的位置關系新題型分類例析
2024-11-11 02:54
【總結】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標準方程及簡單性質(zhì).③了解雙曲線的定義、幾何圖形和標準方程,知道它的簡單幾何性質(zhì).④了解圓錐曲線的簡單應用.⑤理解數(shù)形結合的
2024-11-10 23:01
【總結】?第四節(jié)圓錐曲線的綜合問題考綱點擊了解圓錐曲線的初步應用熱點提示(組)求圓錐曲線的基本量;(不等式)研究圓錐曲線有關參變量的范圍;點的軌跡方程;考綱點擊了解圓錐曲線的初步應用熱點提示“計算”的方法證明圓錐曲線的有關性質(zhì);線和圓錐曲線的交點問
【總結】曲線上存在兩條互相垂直的切線問題模型探究——園丁2例題(天津預賽)如果曲線的兩條互相垂直的切線交于點,則點的坐標不可能是()()()()()解析設曲線在點的切線交于點,那么由題意可知:,其中;即有.又,則有,當且僅當時,等號成立.因此,當時,,即可知.那么,.故可知()錯.評注此題或先求出和兩個交點,再利用周期為
2025-03-25 03:41
【總結】常用曲線的極坐標方程(3)------圓錐曲線的極坐標方程教學目標1.進一步學習在極坐標系求曲線方程2.求出并掌握圓錐曲線的極坐標方程教學重點1.圓錐曲線極坐標方程的統(tǒng)一形式2.方程中字母的幾何意義情境1:直線與圓在極坐標系下都有確定的方程,我們熟悉的圓錐曲線呢?
2024-11-11 02:53
【總結】高考數(shù)學復習強化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識概要:知識精講:圓錐曲線的綜合問題包括:解析法的應用,數(shù)形結合的思想,與圓錐曲線有關的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進一步掌握函數(shù)與方程
【總結】2020屆高考數(shù)學復習強化雙基系列課件73《圓錐曲線-橢圓》一.基本知識概要1橢圓的兩種定義:①平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于定長的點的軌跡,即點集M={P||PF1|+|PF2|=2a,2a>|F1F2|};(時為線段,無軌跡)。其中兩定
2024-11-12 01:26
【總結】2020屆高考數(shù)學復習強化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識概要:知識精講:圓錐曲線的綜合問題包括:解析法的應用,數(shù)形結合的思想,與圓錐曲線有關的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進一步掌握
【總結】求曲線方程一、復習回顧曲線的方程和方程的曲線的概念:在直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解滿足下列關系:(1)曲線上的點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都在曲線上.這個方程叫做曲線的方程;這個曲線叫做方程的曲線.
2024-11-10 07:55
【總結】§雙曲線及其標準方程1.橢圓的定義平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a的點M的軌跡.(2a|F1F2|0)|MF1|+|MF2|=2a①、數(shù)學表達式:
【總結】山東農(nóng)業(yè)大學高等數(shù)學主講人:蘇本堂一、空間曲線的切線與法平面二、曲面的切平面和法線第六節(jié)多元函數(shù)微分學的幾何應用山東農(nóng)業(yè)大學高等數(shù)學
2025-05-12 12:02