【導(dǎo)讀】Q●P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?無限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線.這種方法叫割線逼近切線.該點(diǎn)處的切線反映。
【總結(jié)】《求曲線的方程》引例:在美麗的南沙群島中,甲島與乙島相距8海里,一艘軍艦在海上巡邏,巡邏過程中,從軍艦上看甲乙兩島,保持視角為直角,你認(rèn)為軍艦巡邏的路線應(yīng)是怎樣的曲線,你能為它寫出一個(gè)方程嗎?例1、設(shè)A、B兩點(diǎn)的坐標(biāo)是(-1,-1)和(2,3),求線段AB的垂直平分線的方程?xyoAB思考:①
2024-11-09 08:46
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件79《圓錐曲線-圓錐曲線的應(yīng)用》圓錐曲線定義應(yīng)用第1課時(shí)一、基本知識(shí)概要:·涉及圓錐曲線上的點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形,常用第一定義結(jié)合正余弦定理;·涉及焦點(diǎn)、準(zhǔn)線、圓錐曲線上的點(diǎn),常用統(tǒng)一的定義。橢圓的定義:點(diǎn)集M={P||PF1
2024-11-11 08:49
【總結(jié)】圓錐曲線的應(yīng)用高三備課組一、基本知識(shí)概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學(xué)模型是實(shí)現(xiàn)應(yīng)用問題向數(shù)學(xué)問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實(shí)際問題中的應(yīng)用,說明數(shù)學(xué)建模的方法,理解函數(shù)與方程、等價(jià)轉(zhuǎn)化、分類討論等數(shù)學(xué)思想。二、例題:例題1:設(shè)有一顆慧星沿一橢圓軌道
2024-11-09 08:48
【總結(jié)】《雙曲線的幾何性質(zhì)》教學(xué)目標(biāo)?(對(duì)稱性、范圍、頂點(diǎn)、離心率);?.三.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì).2、對(duì)稱性雙曲線的幾何性質(zhì))0,0(12222????ba
2024-11-10 00:28
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件24《圓錐曲線》圓錐曲線與平面向量考試內(nèi)容:橢圓、雙曲線、拋物線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)以及直線與圓錐曲線的位置關(guān)系,平面向量的概念,向量的坐標(biāo)運(yùn)算.高考熱點(diǎn):圓錐曲線與平面向量的綜合.熱點(diǎn)題型1:直線與圓錐曲線的位置關(guān)系新題型分類例析
2024-11-11 02:54
【總結(jié)】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單性質(zhì).③了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單幾何性質(zhì).④了解圓錐曲線的簡單應(yīng)用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【總結(jié)】?第四節(jié)圓錐曲線的綜合問題考綱點(diǎn)擊了解圓錐曲線的初步應(yīng)用熱點(diǎn)提示(組)求圓錐曲線的基本量;(不等式)研究圓錐曲線有關(guān)參變量的范圍;點(diǎn)的軌跡方程;考綱點(diǎn)擊了解圓錐曲線的初步應(yīng)用熱點(diǎn)提示“計(jì)算”的方法證明圓錐曲線的有關(guān)性質(zhì);線和圓錐曲線的交點(diǎn)問
【總結(jié)】曲線上存在兩條互相垂直的切線問題模型探究——園丁2例題(天津預(yù)賽)如果曲線的兩條互相垂直的切線交于點(diǎn),則點(diǎn)的坐標(biāo)不可能是()()()()()解析設(shè)曲線在點(diǎn)的切線交于點(diǎn),那么由題意可知:,其中;即有.又,則有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.因此,當(dāng)時(shí),,即可知.那么,.故可知()錯(cuò).評(píng)注此題或先求出和兩個(gè)交點(diǎn),再利用周期為
2025-03-25 03:41
【總結(jié)】常用曲線的極坐標(biāo)方程(3)------圓錐曲線的極坐標(biāo)方程教學(xué)目標(biāo)1.進(jìn)一步學(xué)習(xí)在極坐標(biāo)系求曲線方程2.求出并掌握?qǐng)A錐曲線的極坐標(biāo)方程教學(xué)重點(diǎn)1.圓錐曲線極坐標(biāo)方程的統(tǒng)一形式2.方程中字母的幾何意義情境1:直線與圓在極坐標(biāo)系下都有確定的方程,我們熟悉的圓錐曲線呢?
2024-11-11 02:53
【總結(jié)】高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握函數(shù)與方程
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件73《圓錐曲線-橢圓》一.基本知識(shí)概要1橢圓的兩種定義:①平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的和等于定長的點(diǎn)的軌跡,即點(diǎn)集M={P||PF1|+|PF2|=2a,2a>|F1F2|};(時(shí)為線段,無軌跡)。其中兩定
2024-11-12 01:26
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件80《圓錐曲線的綜合問題》一、基本知識(shí)概要:知識(shí)精講:圓錐曲線的綜合問題包括:解析法的應(yīng)用,數(shù)形結(jié)合的思想,與圓錐曲線有關(guān)的定值、最值等問題,主要沿著兩條主線,即圓錐曲線科內(nèi)綜合與代數(shù)間的科間綜合,靈活運(yùn)用解析幾何的常用方法,解決圓錐曲線的綜合問題;通過問題的解決,進(jìn)一步掌握
【總結(jié)】求曲線方程一、復(fù)習(xí)回顧曲線的方程和方程的曲線的概念:在直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解滿足下列關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都在曲線上.這個(gè)方程叫做曲線的方程;這個(gè)曲線叫做方程的曲線.
2024-11-10 07:55
【總結(jié)】§雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a的點(diǎn)M的軌跡.(2a|F1F2|0)|MF1|+|MF2|=2a①、數(shù)學(xué)表達(dá)式:
【總結(jié)】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的切線與法平面二、曲面的切平面和法線第六節(jié)多元函數(shù)微分學(xué)的幾何應(yīng)用山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)
2025-05-12 12:02