【總結】第三章導數(shù)一導數(shù)幾種常見函數(shù)的導數(shù)由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值.lim)3(0xyyx??????求極限說明:上面的方法中把x換x0即為求函數(shù)在點x0處的導數(shù).
2025-07-25 15:19
【總結】1第三章復變函數(shù)的積分§解析函數(shù)的高階導數(shù)§解析函數(shù)的高階導數(shù)一、高階導數(shù)定理二、柯西不等式三、劉維爾定理2第三章復變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【總結】已知:函數(shù)是可導的奇函數(shù),求證:其導函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【總結】.導數(shù)的運算幾個常用函數(shù)的導數(shù)1.導數(shù)的幾何意義是什么?????00.nnnnfxfxPPkxx???割線的斜率是????????000'00,.,.lim.xPPkPTfxxxkf
2024-12-08 07:42
【總結】?.?條件.?.重點難點重點:利用導數(shù)知識求函數(shù)的極值難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟觀察圖象中,點a和點b處的函數(shù)值與它們附近點的函數(shù)值有什么的大小關系?aboxy??xfy?一極值的定義?點a叫做函數(shù)y=f(x)的極小值點,
2025-07-26 19:48
【總結】1.隱函數(shù)的導數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對x求導再解出,y?但應注意F對變元y求導時,要利用復合求導法則.2.對數(shù)求導法當函數(shù)式較復雜(含乘、除、乘方、開方、冪指函數(shù)等)時,在方程兩邊取對數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結】基本初等函數(shù)的導數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2025-10-25 19:25
【總結】一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?y?為了解決上面的問題
2025-04-28 23:00
【總結】變量與函數(shù)人教版數(shù)學八年級上冊第十四章一次函數(shù)請你欣賞大千世界處在不停的運動變化之中,如何從數(shù)學的角度來刻畫這些運動變化并尋找規(guī)律呢?(1)某影院每張電影票的售價為10元,設一場電影售出x張票,票房收入為y元,怎樣用含x的式子表示y?問題:(2)在一根彈簧
2025-07-18 15:00
【總結】上頁下頁鈴結束返回首頁1主要內(nèi)容:第二章導數(shù)與微分第三節(jié)由參數(shù)方程確定的函數(shù)的導數(shù)、高階導數(shù)一、由參數(shù)方程確定的函數(shù)的導數(shù);二、高階導數(shù).上頁下頁鈴
2025-05-12 16:21
【總結】第三節(jié)二、高階導數(shù)的運算法則一、高階導數(shù)的概念高階導數(shù)、隱函數(shù)及由參數(shù)方程所確定函數(shù)的導數(shù)三、隱函數(shù)的導數(shù)四、由參數(shù)方程確定的函數(shù)的導數(shù)一、高階導數(shù)的概念速度即加速度即引例:變速直線運動定義.若函數(shù)的導數(shù)可導,或即或類似地,二階導數(shù)的導數(shù)稱為三階導數(shù),階導數(shù)的導數(shù)稱為n階導數(shù),
2025-04-30 18:03
【總結】導數(shù)1、設函數(shù).(1)討論函數(shù)在定義域內(nèi)的單調(diào)性;(2)當時,任意,恒成立,求實數(shù)的取值范圍.2、已知二次函數(shù)對都滿足且,設函數(shù)(,).(Ⅰ)求的表達式;(Ⅱ)若,使成立,求實數(shù)的取值范圍;(Ⅲ)設,,求證:對于,恒有.
2025-03-25 00:40
【總結】一、隱函數(shù)的導數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩邊求導.例1.,00????xyxdxdydxdyy
2025-07-24 06:04
【總結】1北師大版高中數(shù)學選修2-2第三章《導數(shù)應用》河北隆堯第一中學2一、教學目標:1、知識與技能:會求函數(shù)的最大值與最小值。2、過程與方法:通過具體實例的分析,會利用導數(shù)求函數(shù)的最值。3、情感、態(tài)度與價值觀:讓學生感悟由具體到抽象,由特殊到一般的思想方法。二、教學重點:函數(shù)最大值與最小值的求法教學難點:函數(shù)最
2025-08-05 06:05
【總結】1第六節(jié)高階導數(shù)一、問題的提出二、主要定理三、典型例題四、小結與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導數(shù)?(2)若有高階導數(shù),其定義和求法是否與實變函數(shù)相同?回答:(1)解析函數(shù)有各高階導數(shù).(2)高階導數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-04-30 12:01