【總結(jié)】第三章導(dǎo)數(shù)一導(dǎo)數(shù)幾種常見函數(shù)的導(dǎo)數(shù)由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值.lim)3(0xyyx??????求極限說明:上面的方法中把x換x0即為求函數(shù)在點(diǎn)x0處的導(dǎo)數(shù).
2025-07-25 15:19
【總結(jié)】1第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階導(dǎo)數(shù)§解析函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)定理二、柯西不等式三、劉維爾定理2第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【總結(jié)】已知:函數(shù)是可導(dǎo)的奇函數(shù),求證:其導(dǎo)函數(shù)是偶函數(shù)。()fx()fx?????????????000()limlimlim()xxxfxxfxfxxfxxfxxfxxfxxfx????
2025-07-25 20:32
【總結(jié)】.導(dǎo)數(shù)的運(yùn)算幾個(gè)常用函數(shù)的導(dǎo)數(shù)1.導(dǎo)數(shù)的幾何意義是什么?????00.nnnnfxfxPPkxx???割線的斜率是????????000'00,.,.lim.xPPkPTfxxxkf
2024-12-08 07:42
【總結(jié)】?.?條件.?.重點(diǎn)難點(diǎn)重點(diǎn):利用導(dǎo)數(shù)知識(shí)求函數(shù)的極值難點(diǎn):對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟觀察圖象中,點(diǎn)a和點(diǎn)b處的函數(shù)值與它們附近點(diǎn)的函數(shù)值有什么的大小關(guān)系?aboxy??xfy?一極值的定義?點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),
2025-07-26 19:48
【總結(jié)】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對x求導(dǎo)再解出,y?但應(yīng)注意F對變元y求導(dǎo)時(shí),要利用復(fù)合求導(dǎo)法則.2.對數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開方、冪指函數(shù)等)時(shí),在方程兩邊取對數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結(jié)】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2024-11-03 19:25
【總結(jié)】一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問題
2025-04-28 23:00
【總結(jié)】變量與函數(shù)人教版數(shù)學(xué)八年級上冊第十四章一次函數(shù)請你欣賞大千世界處在不停的運(yùn)動(dòng)變化之中,如何從數(shù)學(xué)的角度來刻畫這些運(yùn)動(dòng)變化并尋找規(guī)律呢?(1)某影院每張電影票的售價(jià)為10元,設(shè)一場電影售出x張票,票房收入為y元,怎樣用含x的式子表示y?問題:(2)在一根彈簧
2025-07-18 15:00
【總結(jié)】上頁下頁鈴結(jié)束返回首頁1主要內(nèi)容:第二章導(dǎo)數(shù)與微分第三節(jié)由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)、高階導(dǎo)數(shù)一、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù);二、高階導(dǎo)數(shù).上頁下頁鈴
2025-05-12 16:21
【總結(jié)】第三節(jié)二、高階導(dǎo)數(shù)的運(yùn)算法則一、高階導(dǎo)數(shù)的概念高階導(dǎo)數(shù)、隱函數(shù)及由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)三、隱函數(shù)的導(dǎo)數(shù)四、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、高階導(dǎo)數(shù)的概念速度即加速度即引例:變速直線運(yùn)動(dòng)定義.若函數(shù)的導(dǎo)數(shù)可導(dǎo),或即或類似地,二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),階導(dǎo)數(shù)的導(dǎo)數(shù)稱為n階導(dǎo)數(shù),
2025-04-30 18:03
【總結(jié)】導(dǎo)數(shù)1、設(shè)函數(shù).(1)討論函數(shù)在定義域內(nèi)的單調(diào)性;(2)當(dāng)時(shí),任意,恒成立,求實(shí)數(shù)的取值范圍.2、已知二次函數(shù)對都滿足且,設(shè)函數(shù)(,).(Ⅰ)求的表達(dá)式;(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍;(Ⅲ)設(shè),,求證:對于,恒有.
2025-03-25 00:40
【總結(jié)】一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對方程兩邊求導(dǎo).例1.,00????xyxdxdydxdyy
2025-07-24 06:04
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》河北隆堯第一中學(xué)2一、教學(xué)目標(biāo):1、知識(shí)與技能:會(huì)求函數(shù)的最大值與最小值。2、過程與方法:通過具體實(shí)例的分析,會(huì)利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價(jià)值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點(diǎn):函數(shù)最大值與最小值的求法教學(xué)難點(diǎn):函數(shù)最
2025-08-05 06:05
【總結(jié)】1第六節(jié)高階導(dǎo)數(shù)一、問題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問題的提出問題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過積分來表示
2025-04-30 12:01