【總結(jié)】一、隱函數(shù)求導(dǎo)法二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)§上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)一、隱函數(shù)的導(dǎo)數(shù)?顯函數(shù)與隱函數(shù)下頁(yè)(1)顯函數(shù):我們把函數(shù)y可由自變量x的解析式稱為顯函數(shù).)(xfy?也可以確定一個(gè)函數(shù),143??yx對(duì)
2025-07-23 19:15
【總結(jié)】第十節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第二章一、隱函數(shù)的導(dǎo)數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy
2025-07-24 06:11
【總結(jié)】五233|7???xdxdyxyy求設(shè)例dxdyyx求設(shè)例,2522??dxdyxyyx求設(shè)例,13432???dxdyxyx求設(shè)例,9532???一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化
2025-07-24 06:05
【總結(jié)】的函數(shù)的求導(dǎo)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)返回一、隱函數(shù)的導(dǎo)數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問(wèn)題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩
2025-07-21 12:40
【總結(jié)】§高階導(dǎo)數(shù)、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義問(wèn)題:變速直線運(yùn)動(dòng)的加速度.),(tfs?設(shè))()(tftv??則瞬時(shí)速度為的變化率對(duì)時(shí)間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)
2025-05-07 12:10
【總結(jié)】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對(duì)x求導(dǎo)再解出,y?但應(yīng)注意F對(duì)變?cè)獃求導(dǎo)時(shí),要利用復(fù)合求導(dǎo)法則.2.對(duì)數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開(kāi)方、冪指函數(shù)等)時(shí),在方程兩邊取對(duì)數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結(jié)】反函數(shù)、復(fù)合函數(shù)、參數(shù)方程的求導(dǎo)法則數(shù)學(xué)系賀丹導(dǎo)數(shù)的計(jì)算2導(dǎo)數(shù)的計(jì)算3導(dǎo)數(shù)的計(jì)算4導(dǎo)數(shù)的計(jì)算5導(dǎo)數(shù)的計(jì)算即復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù)。6導(dǎo)數(shù)的計(jì)算連鎖法則可以推廣到有限個(gè)中間變量的情形:7
2025-01-19 10:35
【總結(jié)】1第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階導(dǎo)數(shù)§解析函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)定理二、柯西不等式三、劉維爾定理2第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【總結(jié)】上一頁(yè)下一頁(yè)返回首頁(yè)湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院1由參數(shù)方程所確定的函數(shù)的求導(dǎo)法則一、求導(dǎo)法則二、典型例題三、小結(jié)上一頁(yè)下一頁(yè)返回首頁(yè)湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院2(),().xtyxyt???????若參數(shù)方程確定與由參數(shù)方程間的所確
2025-07-24 03:18
【總結(jié)】1第六節(jié)高階導(dǎo)數(shù)一、問(wèn)題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問(wèn)題的提出問(wèn)題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過(guò)積分來(lái)表示
2025-04-30 12:01
【總結(jié)】§解析函數(shù)的高階導(dǎo)數(shù)一個(gè)解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各高階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過(guò)積分來(lái)表示.這一點(diǎn)和實(shí)變函數(shù)完全不同.一個(gè)實(shí)變函數(shù)在某一區(qū)間上可導(dǎo),它的導(dǎo)數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說(shuō)它有高階導(dǎo)數(shù)存在了.定理解析函數(shù)f(z)的導(dǎo)數(shù)仍為解析函數(shù),它的n階導(dǎo)數(shù)為
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33
【總結(jié)】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復(fù)習(xí)復(fù)合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復(fù)合函數(shù)可分解為:y
2025-05-14 23:10
【總結(jié)】第六節(jié)高階導(dǎo)數(shù)一、問(wèn)題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問(wèn)題的提出問(wèn)題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過(guò)積分來(lái)表示,這與實(shí)變函
2025-01-20 03:38
【總結(jié)】導(dǎo)數(shù)公式表一、知識(shí)新授:1、常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點(diǎn)處的切線平行于x軸。練習(xí)2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14