【導(dǎo)讀】A(3,2)和拋物線y2=2x,F是拋物線焦點,最小,并求出這個最小值.還有什么幾何性質(zhì)呢?p─焦點到準(zhǔn)線的距離.2p─過焦點垂直軸的弦長.且這個形狀與雙曲線是有很大區(qū)別的.的拋物線的方程是______________.對稱軸方程是_________,焦點坐標(biāo)為_________,
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-1《拋物線的幾何意義》教學(xué)目標(biāo)?1.掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì);?2.能根據(jù)拋物線的幾何性質(zhì)對拋物線方程進行討論,在此基礎(chǔ)上列表、描點、畫拋物線圖形;?3.在對拋物線幾何性質(zhì)的討論中,注意數(shù)與形的結(jié)合與轉(zhuǎn)化?教學(xué)重點:拋物線的
2024-11-12 17:11
【總結(jié)】一、復(fù)習(xí)⒈焦點弦的定義⒉焦半徑公式⒊通徑20px?pHH2||21?若M在焦點為F的拋物線上,)0(22??ppxy),(00yx則|MF|=OxyFM2px??Oxy
2024-11-09 01:54
【總結(jié)】容城中學(xué)曹靜寧圖形標(biāo)準(zhǔn)方程焦點坐標(biāo)準(zhǔn)線方程范圍對稱軸頂點離心率y2=2pxy2=-2pxx2=2pyx2=-2py)0,2(pF)0,2pF(-)2,0(pF)2,0(pF-2=px-2=px2=
2024-11-09 03:52
【總結(jié)】宜豐中學(xué)數(shù)學(xué)組況正芳高中數(shù)學(xué)第二冊(上)高中數(shù)學(xué)第八章圓錐曲線課件2020年12月16日書山有路勤為徑,學(xué)海無崖苦作舟少小不學(xué)習(xí),老來徒傷悲成功=艱苦的勞動+正確的方法+少談空話天
2024-11-09 13:24
【總結(jié)】典型例題一例1過拋物線焦點的一條直線與它交于兩點P、Q,通過點P和拋物線頂點的直線交準(zhǔn)線于點M,如何證明直線MQ平行于拋物線的對稱軸?解:思路一:求出M、Q的縱坐標(biāo)并進行比較,如果相等,則MQ//x軸,為此,將方程聯(lián)立,解出直線OP的方程為即令,得M點縱坐標(biāo)得證.由此可見,按這一思路去證,運算較為繁瑣.思路二:利用命題“如果過拋物線的焦點的一條直線和這條拋物線
2025-03-25 02:27
【總結(jié)】拋物線的簡單幾何性質(zhì)一、本節(jié)課內(nèi)容分析與學(xué)情分析1、教材的內(nèi)容和地位本節(jié)課是人教版普通高中課程標(biāo)準(zhǔn)實驗教科書A版《數(shù)學(xué)》選修2—1第二章第四節(jié)的內(nèi)容。它是在學(xué)習(xí)了拋物線的定義及其標(biāo)準(zhǔn)方程的基礎(chǔ)上,系統(tǒng)地按照拋物線方程來研究拋物線的簡單幾何性質(zhì),是高中數(shù)學(xué)的重要內(nèi)容。本節(jié)內(nèi)容的學(xué)習(xí),是對前面所學(xué)知識的深化、拓展和總結(jié),可使學(xué)生對圓錐曲線形成一個系統(tǒng)的認(rèn)識,同時也是一個培養(yǎng)學(xué)生數(shù)學(xué)思維
2025-04-17 01:28
【總結(jié)】課題拋物線的簡單幾何性質(zhì)授課班級高二(5)班時間2020年11月30日講課人司寶柱教學(xué)目標(biāo)[知識與技能]1、拋物線的幾何性質(zhì)、范圍、對稱性、定點、離心率。.2、會利用拋物線的幾何性質(zhì)求解一些簡單的題型。[過程與方法]1、使學(xué)生掌握拋物線的幾何
2024-11-23 13:15
【總結(jié)】第二章圓錐曲線與方程拋物線的簡單幾何性質(zhì)xyo準(zhǔn)線方程焦點坐標(biāo)標(biāo)準(zhǔn)方程圖形xyoFy2=2px(p0)x2=2py(p0)x2=-2py(p0)xyoFxyoFxyoFy
2025-08-05 07:31
【總結(jié)】1、拋物線的定義一.復(fù)習(xí)回顧··MDlFl平面內(nèi)與一個定點和一條定直線(F不在l上)的距離相等的點的軌跡叫做拋物線FF定點叫做拋物線的焦點定直線叫做拋物線的準(zhǔn)線l設(shè)點M的坐標(biāo)為(x,y)由定義可知,化簡得y2=2
2025-05-12 13:59
【總結(jié)】第四節(jié)拋物線1.拋物線的定義:平面內(nèi)到____________________________________________________________叫做拋物線,定點F叫做拋物線的________,定直線l叫做拋物線的________.基礎(chǔ)梳理焦點一個定點F和一條定直線l(定點F不在l上)的距離相等的點的軌跡
2024-11-12 18:19
【總結(jié)】課時作業(yè)(十三)一、選擇題1.已知點P(6,y)在拋物線y2=2px(p0)上,若點P到拋物線焦點F的距離等于8,則焦點F到拋物線準(zhǔn)線的距離等于( )A.2B.1C.4D.8【解析】 拋物線y2=2px(p0)的準(zhǔn)線為x=-,因為P(6,y)為拋物線上的點,所以點P到焦點F的距離等于它到準(zhǔn)線的距離,所以6+=8,所以p=4,即焦點F到拋物線的距離
【總結(jié)】拋物線過焦點弦的性質(zhì)及應(yīng)用蕭城一中:孫鑫2020年1月11號星期二復(fù)習(xí)回顧拋物線性質(zhì):1,拋物線定義2,拋物線幾何性質(zhì)圖形標(biāo)準(zhǔn)方程范圍對稱性頂點離心率)0(2???ppxy2)0(2??
2024-11-09 03:31
【總結(jié)】拋物線的簡單幾何性質(zhì)習(xí)題一【同步達(dá)綱練習(xí)】A級一、選擇題,則過A且與l相切圓的圓心軌跡是() =10x的焦點到準(zhǔn)線的距離是() ,x軸為對稱軸的拋物線的焦點在直線2x-4y+11=0上,則此拋物線的方程是()=11x =-11x =22x =-22x=2px(
2025-06-24 21:23
【總結(jié)】拋物線的簡單幾何性質(zhì)城郊中學(xué):代俊俊M是拋物線y2=2px(p>0)上一點,若點M的橫坐標(biāo)為x0,則點M到焦點的距離是x0+—2pOyx.FM.焦半徑及焦半徑公式拋物線上一點到焦點的距離P(x0,y0)在y2=2px上,P(x0,y
2024-11-18 13:30
【總結(jié)】拋物線標(biāo)準(zhǔn)方程及幾何性質(zhì)問題情境拋物線的生活實例拋球運動平面內(nèi)與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。一、定義的軌跡是拋物線。則點若MMNMF,1?即:︳︳︳︳··FMlN定點F叫做拋物線的焦
2025-08-15 22:22