【導(dǎo)讀】微積分學基本定理。變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系。變速直線運動中路程為。另一方面這段路程可表示為。微積分基本公式表明:。求定積分問題轉(zhuǎn)化為求原函數(shù)的問題.例2:計算由直線y=x-4,曲線。以及x軸所圍圖形的面積S.
【總結(jié)】微積分基本定理微積分是研究各種科學的工具,在中學數(shù)學中是研究初等函數(shù)最有效的工具.恩格斯稱之為“17世紀自然科學的三大發(fā)明之一”.學習微積分的意義微積分的產(chǎn)生和發(fā)展被譽為“近代技術(shù)文明產(chǎn)生的關(guān)鍵事件之一,它引入了若干極其成功的、對以后許多數(shù)學的發(fā)展起決定性作用的思想.”微積分的建立,無
2025-01-19 21:34
【總結(jié)】bxxxxxann????????1210?],[1iiixx???任取???niixf1)(?做和式:常數(shù))且有,(/))((lim10Anabfniin??????復(fù)習:1、定積分是怎樣定義?設(shè)函數(shù)f(x)在[a,b]上連續(xù),在[a,b]中任意插入n-1個分點:
2025-05-04 22:34
【總結(jié)】煙臺大學數(shù)學與信息科學學院一元微積分學融入數(shù)學建模思想的教學實踐與過程解析王憲杰煙臺大學數(shù)學與信息科學學院,山東煙臺,264005煙臺大學數(shù)學與信息科學學院高等數(shù)學在許多領(lǐng)域中都有著成功的應(yīng)用,但是,這些成功的應(yīng)用在目前幾乎所有《高等數(shù)學》教科書中卻很
2024-10-04 16:56
【總結(jié)】微積分基本定理(1)2020年12月24日星期四定積分的定義:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)的長度為,在每個小區(qū)間上取一點,依次為x1,x2,…….xi,….xn,作和如果無限趨近于
2024-11-17 15:36
【總結(jié)】如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),證Mdxxfabmba?????)(1)()()(abMdxxfabmba??????由閉區(qū)間上連續(xù)函數(shù)的介值定理知則在積分區(qū)間],[ba上至少存在一個點?,使dxxfba?)())((abf???.)(ba???定理1(定積分中值定理)積分
2025-05-12 23:44
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點難點重點:了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點:用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0x1&l
2024-12-07 18:51
【總結(jié)】第一章第十三節(jié)定積分與微積分基本定理(理)題組一定積分的計算(x)為偶函數(shù)且f(x)dx=8,則f(x)dx等于( )A.0B.4C.8D.16解析:原式=f(x)dx+f(x)dx,∵原函數(shù)為偶函數(shù),∴在y軸兩側(cè)的圖象對稱,∴對應(yīng)的面積相等,
2025-07-22 09:21
【總結(jié)】高等院校非數(shù)學類本科數(shù)學課程——一元微積分學大學數(shù)學(一)第三十講一元微積分的應(yīng)用(六)腳本編寫:劉楚中教案制作:劉楚中——微積分在物理中的應(yīng)用第七章常微分方程本章學習要求:?了解微分方程、解、通解、初始條件和特解的概念.?了解下列幾種一階微分方程:變量可分離的方
2024-10-19 08:19
【總結(jié)】第4講定積分與微積分的基本定理★知識梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點,將區(qū)間等分成幾個小區(qū)間,在每一個小區(qū)間上任取一點,作和,當時,上述和無限接近某個常數(shù),這個常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2025-08-17 05:56
【總結(jié)】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學目標[中@*國&教^育出版#網(wǎng)]通過實例,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分二、教學重難點重點通過探究變速直線運動物體的速度與位移的關(guān)系,使學生直觀了解微積分基本定理的含義,并能正確運用基本定理計算簡單的
2024-12-07 21:43
【總結(jié)】微積分基本定理變速直線運動中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運動中位移為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),求物體在這段時間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-08-16 01:33
【總結(jié)】(1826-1866)只有在微積分發(fā)明之后,物理學才成為一門科學.只有在認識到自然現(xiàn)象是連續(xù)的之后,構(gòu)造抽象模型的努力才取得了成功。黎曼多元函數(shù)積分學定積分(DefiniteIntegral)二重積分(DoubleIntegral)三重積分(Tri
2025-02-18 23:10
【總結(jié)】《微積分基本定理》導(dǎo)學案學習目標:,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分,體會事物間的相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系,培養(yǎng)學生辯證唯物主義觀點,提高理性思維能力[中%國教*&育^出版@網(wǎng)]學習重點難點:通過探究變速直線運動物體的速度與位移的關(guān)系,使學生直觀了解微積分基本定理的含義,
2024-12-07 21:44
【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22