freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

同時(shí)考慮可控制前置時(shí)間及貨幣時(shí)間價(jià)值因素之存貨訂購(gòu)-資料下載頁(yè)

2025-07-07 13:16本頁(yè)面
  

【正文】 ).[ 6 ] Ouyang, L. Y. and Wu, K. S., “A minimax distribution free procedure formixed inventory model with variable leadtime,” International Journal of Production Economics, , (1998).[ 7 ] Ouyang, L. Y., and Wu, K. S., “Mixture inventory model involving variable leadtime and defective units,” Journal of Statistics and Management Systems, , (1999).[ 8 ] Moon, I. And Choi, S., “A note on leadtime and distributional assumptions in continuous review inventory models,” Computers and Operations Research, Vol. 25, (1998).[ 9 ] Hariga, M. and BenDaya, M., “Some stochastic inventory models with deterministic variable leadtime,” European Journal of Operational Research , (1999).[ 10 ] Lan, S. P., Chu, P., Chung, K. J., Wan, W. J. and Lo, R., “A simple method to locate the optimal solution of the inventory model with variable lead time,” Computers and Operations Research, Vol. 26, (1999).[ 11 ] Ouyang L. Y. and Chang, H. C., “The variable lead time stochastic inventory model with a fuzzy backorder rate,” Journal of the Operational Research Society of Japan, , (2001).[ 12 ] Pan, C. H. and Hsiao, Y. C., “ Inventory models with backorder discounts and variable lead time,” International Journal of Systems Science, , (2001).[ 13 ] Moon I., and Yun W., “An economic order quantity model with a random planning horizon.” The Engineering Economist Vol. 39, (1993).[ 14 ] Gallego, G. and Moon, I., “The distribution free newsboy problem: review and extensions,” Journal of the Operational Research Society, Vol. 44, (1993).[ 15 ] Chun . J., Lin S. D., “A note on the optimal cycle length with a random planning horizon, ” The Engineering Economists, Vol. 40, No. 4, pp. 385392(1995). 附錄一在證明推理二時(shí),我們需要以下的補(bǔ)助定理。補(bǔ)助定理1:(Chung和Lin[15])(a) for .(b) for .推理二:對(duì)固定的前置時(shí)間,則為之凸函數(shù)。証明:由(7)、(8)、(9)式及補(bǔ)助定理1,可知故Hessian矩陣的行列式如下:其中所以,Hessian矩陣行列式值為正值。因此,為和的凸函數(shù)。(3). 13 / 13
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1