【正文】
G(s) = 0a s →0(2) 應(yīng)先檢查系統(tǒng)的穩(wěn)定性。K p = lim G(s) = ∞s →0KV = lim sG(s) =s →0K200K = lim s 2 G(s) = 0a s →0(3) 應(yīng)先檢查系統(tǒng)的穩(wěn)定性。K p = lim G(s) = ∞s →0KV = lim sG(s) = ∞s →0K = lim s 2 G(s) = 1a s→0317 設(shè)單位反饋系統(tǒng)的開環(huán)傳遞函數(shù)為 G(s) = 1 / Ts 。試用動態(tài)誤差系統(tǒng)法求出當(dāng)輸入信號分別為 r (t ) = t 2 / 2 和 r (t ) = sin 2t 時,系統(tǒng)的穩(wěn)態(tài)誤差。This is tri9al version318 設(shè)控制系統(tǒng)如圖 347 所示。其中K G(s) = K p +sF (s) = 1Js輸入 r (t ) 以及擾動 n1 (t ) 和 n2 (t) 均為單位階躍函數(shù)。試求:(1) 在 r (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差(2) 在 n1 (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差(3) 在 n1 (t ) 和 n2 (t) 同時作用下系統(tǒng)的穩(wěn)態(tài)誤差解:(1) 在 r (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差這時系統(tǒng)的開環(huán)傳遞函數(shù)為:K p s + KG0 (s) = G(s)F (s) =Js 2系統(tǒng)位置誤差系數(shù)為 K P= lim G(s) = ∞s →0在 r (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差 essr= R1 = 01 + K p(2) 在 n1 (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差這時系統(tǒng)的開環(huán)傳遞函數(shù)為:K p s + KG0 (s) = G(s)F (s) =Js 2系統(tǒng)位置誤差系數(shù)為 K P= lim G(s) = ∞s →0在 n1 (t ) 作用下系統(tǒng)的穩(wěn)態(tài)誤差 essn1 =R1 = 01 + K p(3) 在 n1 (t ) 和 n2 (t) 同時作用下系統(tǒng)的穩(wěn)態(tài)誤差n2 (t) 作用下系統(tǒng)的穩(wěn)態(tài)誤差 這時系統(tǒng)的開環(huán)傳遞函數(shù)為:K p s + KG0 (s) = G(s)F (s) =Js 2系統(tǒng)位置誤差系數(shù)為 K P= lim G(s) = ∞s →0在 n2 (t) 作用下系統(tǒng)的穩(wěn)態(tài)誤差 essn 2 =R1 = 01 + K p所以在在 n1 (t ) 和 n2 (t) 同時作用下系統(tǒng)的穩(wěn)態(tài)誤差為essn = essn1 + essn 2 = 0 + 0 = 0319 設(shè)閉環(huán)傳遞函數(shù)的一般形式為214。(s) =G(s)m= bm s+ bm?1 sm?110+ L + b1 s + b01 + G(s)H (s)s n + an ?1s n?1 + L + a s + a誤差定義取 e(t ) = r (t ) ? c(t) 。試證:(1) 系統(tǒng)在階躍信號輸入下,穩(wěn)態(tài)誤差為零的充分條件是:b0 = a0 , bi = 0(i = 1,2,L, m)(2) 系 統(tǒng) 在 斜 坡 信 號 輸 入 下 , 穩(wěn) 態(tài) 誤 差 為 零 的 充 分 條 件 是 :b0 = a0 , b1 = a1 , bi = 0(i = 2,3,L, m)解:(1) 系統(tǒng)在階躍信號輸入下這時R(s) = 1mC (s) = R(s)214。(s) = 1 bm s0+ bm?1 sm?1+ L + b1 s + b0s s s n+ an ?1 sn?1+ L + a1 s + a0mE (s) = R(s) ? C (s) = 1 ? 1 bm s+ bm?1 sm?1+ L + b1 s + b0s s? m m?1s n + a11n ?1s n?1 + L + a s + a?= 1 ?1 ? bm s+ bm?1 s+ L + b1 s + b010?0s ? s n + an ?1s n?1 + L + a s + a ?1 (s n + as n?1 + L + a s + a) ? (bs m + bs m?1 + L + b s + b )= n ?11 0 mm?1 1 0s s n + an ?1s n?1 + L + a s + a1 (s n + as n?1 + L + a s) ? (bs m + bs m?1 + L + b s) + (a? b )= n ?11 m m?11 0 0se = lim e(t ) = lim sE(s)s n + a10n ?1s n?1 + L + a s + ass t →∞s →0(s n + as n?1 + L + a s) ? (bs m + bs m ?1 + L + b s) + (a? b )= lim n ?1 1 m m ?1 1 0 0 0s →0s n + a1n ?1s n?1 + L + a s + a如果 ess = 0則 a0 = b0且 a0 ≠ 0(2)系統(tǒng)在斜坡信號輸入下這時R(s) = 1C (s) = R(s)214。(s) =m1 bm s1+ bm?1 sm?1100+ L + b1 s + b0s 2 s 2s n + a1n ?1s n?1 + L + a s + amE (s) = R(s) ? C (s) =1 ? 1bm s+ bm?1 sm?1+ L + b1 s + b0s 2 s 2? m m?1s n + an ?1s n ?1 + L + a s + a?1 b s= ?1 ? m+ bm?1 s+ L + b1 s + b0?0s 2 ?s n + an ?1s n ?1 + L + a s + a ?1 (s n + as n?1 + L + a s + a) ? (bs m + bs m?1 + L + b s + b )= n ?11 0 mm?1 1 0s 2 s n + a1n ?1s n?1 + L + a s + a1 (s n + as n?1 + L + as 2 ) + ?(bs m + bs m?1 + L + b s 2 ) + (a? b )s + (a? b )= n ?1s 22 ms n + a0n?1m ?1 210s n ?1 + L + a s + a1 1 0 0e = lim e(t ) = lim sE(s) =ss t →∞1 (s n + as →0s n ?1 + L + as 2 ) + ?(bs m + bs m ?1 + L + b s 2 ) + (a? b )s + (a? b )lim =s→0 sn ?12 ms n + an ?1m ?1 210s n ?1 + L + a s + a1 1 0 0如果 ess = 0則 a0 = b0a1 = b1且 a0 ≠ 0320 設(shè)隨動系統(tǒng)的微分方程為2 T d c(t) + dc(t) = ( )1 dt 2K 2 u t dtu(t ) = K1 [r(t ) ? b(t)]T db(t) + b(t ) = c(t )2 dt其中,T1、T2和 K2為正常數(shù)。若要求 r(t)=1+ t 時,c(t)對 r(t)的穩(wěn)態(tài)誤差不大于正常數(shù)ε0,試問 K1應(yīng)滿足什么條件? 已知全部初始條件為零。 解:由上述方程得到拉氏變換如下:2(T1 s+ s)C (s) = K 2U (s)C (s) = K 2 U (s)1T s 2 + sU (s) = K1 [R(s) ? B(s)](T2 s + 1)B(s) = C (s)B(s) =1T2 s + 1C(s)由此得到系統(tǒng)結(jié)構(gòu)圖如下:R(s)K1U(s)K2s(T1s+1)C(s)- B(s)1T2s+1系統(tǒng)閉環(huán)傳遞函數(shù)為:K1 K 2214。(s) =1 +s(T1 s + 1)K1 K 2s(T1 s + 1)(T2 s + 1)= K1 K 2 (T2 s + 1)s(T1 s + 1)(T2 s + 1) + K1 K 2當(dāng) r (t ) = 1 + t 時R(s) = 1 + 1s s 2= s + 1s 2C (s) = R(s)214。(s) = s + 1s 2K1 K 2 (T2 s + 1)s(T s + 1)(T s + 1) + K K1 2 1 2E (s) = R(s) ? C (s) = s + 1 ? s + 1K1 K 2 (T2 s + 1)s 2 s 2s(T1 s + 1)(T2 s + 1) + K1 K 2s + 1 ?K K (T s + 1) ?=2?1 ? 1 2 2 ?s ? s(T1 s + 1)(T2 s + 1) + K1 K 2 ?= s + 1 ? s(T1 s + 1)(T2 s + 1) + K1 K 2 ? K1 K 2 (T2 s + 1) ?2 ? ?s ? s(T1 s + 1)(T2 s + 1) + K1 K 2 ?= s + 1 ? (T1 s + 1)(T2 s + 1) ? K1 K 2T2 ?? ?s ? s(T1 s + 1)(T2 s + 1) + K1 K 2 ?e = lim e(t ) = lim sE (s) =ss t →∞s +s→0? T s +T s +? K K T ?lim((1)? 11)( 2 1)1 2 2?s →0s(T s + 1)(T s + 1) + K K? 1 21 2 ?= lim (T1 s + 1)(T2 s + 1) ? K1 K 2T2s →0s(T s + 1)(T s + 1) + K K1= 1 ? K1 K 2T2K1 K 2所以2 1 2≤ 229。 01K 2 (T2 + 229。 0 )≤ K1系統(tǒng)特征方程為:32s(T1 s + 1)(T2 s + 1) + K1 K 2 = T1T2 s勞思表如下:+ (T1 + T2 )s+ s + K1 K 2 = 0s 3 T T 11 22s T1+ T2K1 K 2s1 T1 + T2 ? K1 K 2T1T2 0T1 + T2s 0 K K1 2如果系統(tǒng)穩(wěn)定,則T1 + T2 ? K1 K 2T1T2 0 即 K1 T1 + T2K T TT1 + T2所以1≤ K1 T1 + T22 1 2K 2 (T2 + 229。 0 )K 2T1T2This is tri1a4l version胡壽松自動控制原理習(xí)題解答第四章41 設(shè)單位反饋控制系統(tǒng)的開環(huán)傳遞函數(shù)K ? G(s) =s + 1試用解析法繪出 K ? 從零變到無窮時的閉環(huán)根軌跡圖,并判斷下列點是否在根軌跡上: (-2+j0), (0+j1), (-3+j2)