【總結】圓與相似三角形、解直角三角形及二次函數(shù)的綜合類型一:圓與相似三角形的綜合1.如圖,BC是⊙A的直徑,△DBE的各個頂點均在⊙A上,BF⊥:BD·BE=BC·BF.2.如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.(1)求證:點E是邊B
2025-06-19 01:54
【總結】1三角函數(shù)和解三角形【知識導讀】【方法點撥】三角函數(shù)是一種重要的初等函數(shù),它與數(shù)學的其它部分如解析幾何、立體幾何及向量等有著廣泛的聯(lián)系,同時它也提供了一種解決數(shù)學問題的重要方法——“三角法”.這一部分的內(nèi)容,具有以下幾個特點:1.,但公式間的聯(lián)系非常密切,,是記住這些公式的關鍵.2.、數(shù)形結合、分類討論和函數(shù)與方程的思想貫穿于本單元的始終,類比的思維方法
2025-05-01 05:28
【總結】歡迎交流唯一QQ1294383109希望大家互相交流三角變換與解三角形6.如右圖,設A,B兩點在河的兩岸,一測量者在A的同側,在所在的河岸邊選定一點C,測出AC的距離為50m,45ACB???,105CAB???后,就可以計算出A,B兩點的距離為(其中2????,3????,精確到)
2025-08-13 20:09
【總結】歸納:已知一個銳角,根據(jù)∠A+∠B=90°,可以求另一銳角?!螦=90°-∠B;∠B=90°-∠A;問題一:已知Rt△ABC中,∠C=90°,設∠A的對邊為a,∠B的對邊為b,∠C的對邊為c。ACBab
2025-11-13 01:20
【總結】3??6?o1x1?y解答題1.已知函數(shù)2()3sin22sinfxxx??.(Ⅰ)若點(1,3)P?在角?的終邊上,求()f?的值;(Ⅱ)若[,]63x????,求()fx的值域.解:(Ⅰ)因為點(1,3)P?在角?的終邊上,所以3sin2?
2025-11-15 15:37
【總結】.......九上第一章 銳角三角函數(shù)與解直角三角形考綱要求命題趨勢1.理解銳角三角函數(shù)的定義,掌握特殊銳角(30°,45°,60°)的三角函數(shù)值,并會進行計算.2.掌握直角三角形邊
2025-06-22 19:54
【總結】......1.任意角的三角函數(shù)的定義:設是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關,而與終邊上點P的位置無關。:(一全二正弦,三切四余弦)+
2025-06-22 22:17
【總結】1.任意角的三角函數(shù)的定義:設是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關,而與終邊上點P的位置無關。:(一全二正弦,三切四余弦)+?。 。 。 。 。 。 。 。 。 。?.同
2025-06-22 22:24
【總結】......三角函數(shù)知識點2、角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上
2025-06-23 03:58
【總結】專題考案解三角形(時間:90分鐘滿分:100分)一、選擇題(9×3′=27′)1.在△ABC中,“A30°”是“sinA”的()2.已知△ABC中,a=x,b=2,∠B=45°,若這個三角形有兩解,則的取值范圍是
2025-06-07 23:53
【總結】2020屆高考數(shù)學復習強化雙基系列課件23《三角函數(shù)-三角形中的三角函數(shù)》三角形中的有關公式:三角形三內(nèi)角之和為?,即A+B+C=?.注任意兩角和與第三個角總互補;任意兩半角和與第三個角的半角總互余;銳角三角形?三內(nèi)角都是銳角?任兩角和都是鈍角設△ABC中,角A、
2025-11-02 08:50
【總結】高考文科數(shù)學專題復習三角函數(shù)、解三角形專題一 三角函數(shù)的概念、同角三角函數(shù)的關系式及誘導公式A組三年高考真題(2016~2014年)1.(2015·福建,6)若sinα=-,且α為第四象限角,則tanα的值等于( )A.B.-C.D.-2.(2014·大綱全
2025-04-17 12:37
【總結】....解三角形題型分類題型一:正余弦定理推論的應用題型二:三角形解的個數(shù)的確定
2025-03-25 07:46
【總結】第31講三角形中的三角函數(shù)、余弦定理將三角形的邊角轉化.,三角形內(nèi)三角函數(shù)的求值及三角恒等式的證明.1.△ABC中,已知sinA=2sinBcosC,sin2A=sin2B+sin2C,則三角形的形狀是()D由sin2A=s
2025-10-31 08:50
【總結】專題二三角函數(shù)、三角恒等變換與解三角形三角函數(shù)的圖像與性質(zhì)三角恒等變換與解三角形三角函數(shù)的圖像與性質(zhì)返回目錄考點考向探究核心知識聚焦三角函數(shù)的圖像與性質(zhì)體驗高考返回目錄核心知識聚焦1.[2022·全國卷改編]已知角
2025-07-25 23:41