【總結】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數,且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2024-11-05 18:15
【總結】第一篇:不等式證明[精選] §14不等式的證明 不等式在數學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據是不等式的性質,不等式的性分類羅列如下:不等式的性質:a3b?a-b0...
2024-11-08 22:00
【總結】第一篇:導數證明不等式 導數證明不等式 一、當x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2024-10-26 09:50
【總結】第一篇:不等式的證明 學習資料 教學目標 (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡單的不等式; (3)能靈活根據題目選擇適當地...
2024-10-28 23:51
【總結】排序不等式問題探究A1A2AiAnB1B2BiBnOAB問題探究12121122,,,,.nnnncccbbbSacacac???設是數組的任何一個排列何時取得最大值1211121321
2024-11-09 08:08
【總結】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2024-11-06 13:38
【總結】第一篇:證明不等式方法 不等式的證明是高中數學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2024-10-29 04:53
【總結】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數學歸納法的使用原理.(3).會用數學歸納法證明一些簡單問題...
【總結】不等式的證明松北高級中學吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【總結】不等式的證明(放縮法)1.設,,則的大小關系是()A.B.C.D.2.已知三角形的三邊長分別為,設,則與的大小關系是()A.B.C.D.3.設不等的兩個正數滿足,則的取值范
2025-07-24 12:58
【總結】精品資源巧用向量證明不等式對不等式的證明,若認真分析某些不等式的條件和結論,構造適當的向量,利用向量數量積的性質,可使證明過程變得簡捷,下面舉例加以說明。例1.已知。證明:設由(為的夾角)得,即有故例2.已知。證明:設,由和,得,故。例3.求證:。證明:設
2025-06-24 20:59
【總結】......二輪專題(十一)導數與不等式證明【學習目標】1.會利用導數證明不等式.2.掌握常用的證明方法.【知識回顧】一級排查:應知應會,利用新函數的單調性或最值解決不等式的證明問題.比如要證明
2025-04-17 00:39
【總結】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實數,則(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc時,等號成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2025-07-23 10:08
【總結】精品資源普通高中課程標準實驗教科書—數學[人教版]高三新數學第一輪復習教案(講座31)—不等式性質及證明一.課標要求:1.不等關系通過具體情境,感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景;2.基本不等式:(a,b≥0)①探索并了解基本不等式的證明過程;②會用基本不等式解決簡單的最大(?。﹩栴}。二.命題走向不等式歷來是高考
2025-06-29 16:36
【總結】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16