【總結(jié)】......1、公式法:等差數(shù)列、等比數(shù)列的通項(xiàng)公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關(guān)系,可采用求等差、等比數(shù)列的通項(xiàng)公式的求法,確定數(shù)列的通項(xiàng)。2、非等差、等比數(shù)列的通項(xiàng)公式的求法。(1)觀察法:通過觀察數(shù)列中的
2025-06-25 02:18
【總結(jié)】高三數(shù)學(xué)組學(xué)習(xí)目標(biāo)?在了解數(shù)列概念的基礎(chǔ)上,掌握幾種常見遞推數(shù)列通項(xiàng)公式的求解方法?理解求通項(xiàng)公式的原理?體會(huì)各種方法之間的異同,感受事物與事物之間的相互聯(lián)系2021是這樣考的?1.(2021年高考新課標(biāo)1(理))若數(shù)列{an}的前n項(xiàng)和為Sn=,則數(shù)列{an}的通項(xiàng)公
2025-05-15 02:40
【總結(jié)】數(shù)列通項(xiàng)公式幾種求法的文獻(xiàn)綜述摘要;從近幾年高考的內(nèi)容來看,數(shù)列是高考的重點(diǎn)內(nèi)容,數(shù)列在實(shí)踐和理論中均有較高的價(jià)值,而數(shù)列的列通項(xiàng)公式是數(shù)列的核心內(nèi)容之一。本文從2021-2021年高考求數(shù)列通項(xiàng)公式有關(guān)資料查閱,對(duì)數(shù)列通項(xiàng)公式的常用方法做一個(gè)文獻(xiàn)綜述。關(guān)鍵詞;數(shù)列、通項(xiàng)公式、求法、綜述.高中教材中的數(shù)列有利于發(fā)展學(xué)生的發(fā)散思維能力
2025-06-02 22:50
【總結(jié)】待定系數(shù)法求特殊數(shù)列的通項(xiàng)公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項(xiàng)公式,而這些問題在高考和競(jìng)賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問題,歷屆高考常以這類問題作為一道重大的試題。因此,在教學(xué)中,針對(duì)這類問題,提供一些特殊數(shù)列求通項(xiàng)公式范例,幫助同學(xué)們?nèi)嬲莆者@類問題及求解的一般方法?!∏髷?shù)列的通項(xiàng)公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個(gè)等差數(shù)列
2025-06-25 16:50
【總結(jié)】課時(shí)作業(yè)5 數(shù)列的遞推公式(選學(xué))時(shí)間:45分鐘 滿分:100分課堂訓(xùn)練1.在數(shù)列{an}中,a1=,an=(-1)n·2an-1(n≥2),則a5=( )A.- B.C.- D.【答案】 B【解析】 由an=(-1)n·2an-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=.2.某數(shù)列第一項(xiàng)為1,
2025-03-25 02:52
【總結(jié)】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2025-08-05 09:35
【總結(jié)】數(shù)列通項(xiàng)公式的求法集錦非等比、等差數(shù)列的通項(xiàng)公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對(duì)數(shù)列求通項(xiàng)公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式。解:∵這n-1個(gè)等式累加得:=
2025-06-26 05:28
【總結(jié)】......數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項(xiàng)公式的常用方法.教學(xué)重點(diǎn):運(yùn)用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式的方法.教學(xué)時(shí)數(shù):2課
2025-04-17 04:59
【總結(jié)】海豚教育個(gè)性化簡(jiǎn)案學(xué)生姓名:年級(jí):科目:授課日期:月日上課時(shí)間:時(shí)分------時(shí)分合計(jì):小時(shí)教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會(huì)通過作差法
2025-08-04 10:15
【總結(jié)】......數(shù)列通項(xiàng)公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式
2025-08-03 23:50
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項(xiàng)重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對(duì)獨(dú)立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識(shí)主要涉及等差、等比數(shù)列的通項(xiàng)公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項(xiàng)公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對(duì)等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競(jìng)賽和高考中.
2025-01-06 06:52
【總結(jié)】方法,并能根據(jù)遞推公式求出滿足條件的項(xiàng).法.1,2,2,3,3,3,4,4,4,4,5100A.14B.12C.131.(D2010.
2025-01-18 16:24
【總結(jié)】高考數(shù)列通項(xiàng)公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項(xiàng)公式的方法……………………………………………………………12求通項(xiàng)公式方法選擇策略…………………………………………………123求通項(xiàng)公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-17 13:06
【總結(jié)】......數(shù)列通項(xiàng)公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會(huì)出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是常考的一個(gè)知識(shí)點(diǎn),一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項(xiàng)公式的
2025-06-26 05:23
【總結(jié)】數(shù)列通項(xiàng)的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點(diǎn),因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項(xiàng)往往是解題的突破口、關(guān)鍵點(diǎn)。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項(xiàng)之間的結(jié)構(gòu),縱向看各項(xiàng)與項(xiàng)數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡(jiǎn)單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05