【總結(jié)】yxo翟夫連2020年3月18日二次函數(shù)解析式有哪幾種表達(dá)式?1一般式:y=ax2+bx+c3頂點(diǎn)式:y=a(x-h)2+k2交點(diǎn)式:y=a(x-x1)(x-x2)解:設(shè)所求的二次函數(shù)為y=a(x+1)2-3由條件得:已知拋物線的頂點(diǎn)為(-1,-3),與軸交點(diǎn)為(0,-5
2025-11-01 03:11
【總結(jié)】......—知識(shí)講解(提高)【學(xué)習(xí)目標(biāo)】1.能用待定系數(shù)法列方程組求二次函數(shù)的解析式;2.經(jīng)歷探索由已知條件特點(diǎn),靈活選擇二次函數(shù)三種形式的過程,正確求出二次函數(shù)的解析式,二次函數(shù)三種形式是可以互相轉(zhuǎn)化的.
2025-06-25 22:42
【總結(jié)】專題1-用待定系數(shù)法求二次函數(shù)的解析式二次函數(shù)的解析式常見的三種表達(dá)形式:一般式:y=ax2+bx+c(a≠0)頂點(diǎn)式:y=a(x-h(huán))2+k(a≠0,(h,k)是拋物線的頂點(diǎn)坐標(biāo))交點(diǎn)式:y=a(x-x1)(x-x2)(a≠0,x1、x2是拋物線與x軸交點(diǎn)的橫坐標(biāo))=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)為(-2,4),且經(jīng)過原
2025-03-24 05:51
【總結(jié)】確定一次函數(shù)解析式OEFAyx學(xué)習(xí)目標(biāo):1.已知直線上兩個(gè)點(diǎn),會(huì)確定一次函數(shù)解析式2.體會(huì)數(shù)形結(jié)合思想在一次函數(shù)中的應(yīng)用OEFAyx已知一次函數(shù)圖象過點(diǎn)(2,4)與(-2,-2),求這個(gè)一次函數(shù)的解析式.
2025-08-17 11:37
【總結(jié)】待定系數(shù)法分解因式(附答案)待定系數(shù)法作為最常用的解題方法,可以運(yùn)用于因式分解、確定方程系數(shù)、解決應(yīng)用問題等各種場(chǎng)合。其指導(dǎo)作用貫穿于初中、高中甚至于大學(xué)的許多課程之中,認(rèn)真學(xué)好并掌握待定系數(shù)法,必將大有裨益。內(nèi)容綜述 將一個(gè)多項(xiàng)式表示成另一種含有待定系數(shù)的新的形式,這樣就得到一個(gè)恒等式。然后根據(jù)恒等式的性質(zhì)得出系數(shù)應(yīng)滿足的方程或方程組,其后通過解方程或方程組便可求出待定的系數(shù)
2025-06-25 16:39
【總結(jié)】待定系數(shù)法分解因式待定系數(shù)法作為最常用的解題方法,可以運(yùn)用于因式分解、確定方程系數(shù)、解決應(yīng)用問題等各種場(chǎng)合。其指導(dǎo)作用貫穿于初中、高中甚至于大學(xué)的許多課程之中,認(rèn)真學(xué)好并掌握待定系數(shù)法,必將大有裨益?! ⒁粋€(gè)多項(xiàng)式表示成另一種含有待定系數(shù)的新的形式,這樣就得到一個(gè)恒等式。然后根據(jù)恒等式的性質(zhì)得出系數(shù)應(yīng)滿足的方程或方程組,其后通過解方程或方程組便可求出待定的系數(shù),或找出某些系數(shù)所滿足
2025-06-25 16:40
【總結(jié)】精品資源待定系數(shù)法在不等式中的應(yīng)用在解(證)不等式問題時(shí),最常用的解題技巧是調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)。但調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)時(shí),既要考慮不等式的結(jié)構(gòu),又要符合相關(guān)要求,這些就需要待定系數(shù)法兼顧幾方面的要求。下面舉例說明。例1已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)的表達(dá)式.分析:求函數(shù)的表達(dá)式,實(shí)際上就是確定系數(shù)m、n
2025-06-25 16:51
【總結(jié)】1、已知拋物線y=ax2+bx+c0經(jīng)過點(diǎn)(-1,0),則___________經(jīng)過點(diǎn)(0,-3),則___________經(jīng)過點(diǎn)(4,5),則___________對(duì)稱軸為直線x=1,則___________當(dāng)x=1時(shí),y=0,則a+b+c=_____ab2-=1a-b+c=0c=-316
2025-08-05 10:30
【總結(jié)】數(shù)列通項(xiàng)公式的求法集錦非等比、等差數(shù)列的通項(xiàng)公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對(duì)數(shù)列求通項(xiàng)公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式。解:∵這n-1個(gè)等式累加得:=
2025-06-26 05:28
【總結(jié)】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對(duì)數(shù)列通項(xiàng)公式的求解。特別是在一些綜合性比較強(qiáng)的數(shù)列問題中,數(shù)列通項(xiàng)公式的求解問題往往是解決數(shù)列難題的瓶頸。我現(xiàn)在總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對(duì)大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1.已知
2025-03-25 05:12
【總結(jié)】第2課時(shí)用待定系數(shù)法求二次函數(shù)的解析式教學(xué)目標(biāo)【知識(shí)與技能】利用已知點(diǎn)的坐標(biāo)用待定系數(shù)法求二次函數(shù)的解析式.【過程與方法】通過介紹二次函數(shù)的三點(diǎn)式,頂點(diǎn)式,交點(diǎn)式,結(jié)合已知的點(diǎn),靈活地選擇恰當(dāng)?shù)慕馕鍪角蠓?【情感態(tài)度】經(jīng)歷用待定系數(shù)法求解二次函數(shù)解析式的過程,發(fā)現(xiàn)二次函數(shù)三點(diǎn)式、頂點(diǎn)式與交點(diǎn)式之間的區(qū)別及各自的優(yōu)點(diǎn),培養(yǎng)學(xué)生思維的靈活性.教學(xué)重點(diǎn)待定系數(shù)
2025-04-17 07:37
【總結(jié)】......求遞推數(shù)列通項(xiàng)公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項(xiàng)公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進(jìn)而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項(xiàng)公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項(xiàng)
2025-06-27 04:51
【總結(jié)】......數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項(xiàng)公式的常用方法.教學(xué)重點(diǎn):運(yùn)用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式的方法.教學(xué)時(shí)數(shù):2課
2025-04-17 04:59
【總結(jié)】通項(xiàng)公式求解方法大全:我現(xiàn)在總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對(duì)大家有幫助。一、觀察法已知數(shù)列前若干項(xiàng),求該數(shù)列的通項(xiàng)時(shí),一般對(duì)所給的項(xiàng)觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個(gè)通項(xiàng)。:__________(答:)例2、(1)觀察數(shù)列的結(jié)構(gòu)特征,每一項(xiàng)都是一個(gè)分式,分母是數(shù)列2,4,8,16,32,…,可用項(xiàng)數(shù)表示為分子是數(shù)列1,3,7,1
【總結(jié)】海豚教育個(gè)性化簡(jiǎn)案學(xué)生姓名:年級(jí):科目:授課日期:月日上課時(shí)間:時(shí)分------時(shí)分合計(jì):小時(shí)教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會(huì)通過作差法
2025-08-04 10:15