【總結(jié)】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2025-08-04 10:15
【總結(jié)】數(shù)列通項(xiàng)的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-11 08:49
【總結(jié)】數(shù)列通項(xiàng)的求法高三備課組求數(shù)列的通項(xiàng)方法1、由等差,等比定義,寫出通項(xiàng)公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-09 08:47
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項(xiàng)重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對獨(dú)立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識主要涉及等差、等比數(shù)列的通項(xiàng)公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項(xiàng)公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競賽和高考中.
2025-01-06 06:52
【總結(jié)】高考數(shù)列通項(xiàng)公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項(xiàng)公式的方法……………………………………………………………12求通項(xiàng)公式方法選擇策略…………………………………………………123求通項(xiàng)公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-17 13:06
【總結(jié)】數(shù)列通項(xiàng)的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點(diǎn),因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項(xiàng)往往是解題的突破口、關(guān)鍵點(diǎn)。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項(xiàng)之間的結(jié)構(gòu),縱向看各項(xiàng)與項(xiàng)數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】求數(shù)列通項(xiàng)公式專題練習(xí)1、設(shè)是等差數(shù)列的前項(xiàng)和,已知與的等差中項(xiàng)是1,而是與的等比中項(xiàng),求數(shù)列的通項(xiàng)公式2、已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3、已知數(shù)列中,,前項(xiàng)和與通項(xiàng)滿足,求通項(xiàng)的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。
2025-03-25 02:52
【總結(jié)】用不動點(diǎn)法求遞推數(shù)列(a2+c2≠0)的通項(xiàng)1.通項(xiàng)的求法為了求出遞推數(shù)列的通項(xiàng),我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點(diǎn)方程,其根稱為函數(shù)的不動點(diǎn).下面分兩種情況給出遞推數(shù)列通項(xiàng)的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2025-06-25 01:55
【總結(jié)】專題數(shù)列通項(xiàng)公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項(xiàng)的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項(xiàng)和為,且成等比數(shù)列,.求數(shù)列的通項(xiàng)公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點(diǎn)評:利用定義法求數(shù)列通項(xiàng)時要注意不用錯定義,設(shè)法求出首項(xiàng)與公差(公
2025-03-25 02:53
【總結(jié)】1求數(shù)列通項(xiàng)公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項(xiàng)公式求解。例1.寫出下列數(shù)列的通項(xiàng)公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2025-10-12 19:02
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)
2025-08-16 02:28
【總結(jié)】等比數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
【總結(jié)】數(shù)列的通項(xiàng)公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項(xiàng)起,它的每一項(xiàng)與前一項(xiàng)的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項(xiàng)為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-10 00:27
【總結(jié)】等比數(shù)列的通項(xiàng)公式(教案)一、教學(xué)目標(biāo)1、掌握等比數(shù)列的通項(xiàng)公式,并能夠用公式解決一些相關(guān)問題。2、掌握由等比數(shù)列的通項(xiàng)公式推導(dǎo)出的相關(guān)結(jié)論。二、教學(xué)重點(diǎn)、難點(diǎn)各種結(jié)論的推導(dǎo)、理解、應(yīng)用。三、教學(xué)過程1、導(dǎo)入復(fù)習(xí)等比數(shù)列的定義:通項(xiàng)公式:用歸納猜測的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21