【總結】由此題,如何通過數(shù)列前n項和來求數(shù)列通項公式???首項與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個數(shù)列是等差,求這個數(shù)列的通項公式項和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24
【總結】由遞推公式求通項公式的常用方法由數(shù)列的遞推公式求通項公式是高中數(shù)學的重點問題,也是難點問題,它是歷年高考命題的熱點題。對于遞推公式確定的數(shù)列的求解,通常可以通過遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時若不能直
2025-06-18 13:57
【總結】數(shù)列前n項和的求法求數(shù)列前n項和是數(shù)列的重要內(nèi)容,也是一個難點。求等差(等比)數(shù)列的前n項和,主要是應用公式。對于一些既不是等差也不是等比的數(shù)列,就不能直接套用公式,而應根據(jù)它們的特點,對其進行變形、轉(zhuǎn)化,利用化歸的思想,來尋找解題途徑。一、拆項轉(zhuǎn)化法例1已知數(shù)列
2025-08-05 07:30
【總結】《等差數(shù)列前n項和的公式》說課稿教學目標:A、知識目標:掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。B、能力目標:(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方
2025-08-26 11:26
【總結】n項和泰姬陵坐落于印度距首都新德里200多公里外的北方邦的阿格拉市,是十七世紀莫臥兒帝國皇帝沙杰罕為紀念其愛妃所建,她宏偉壯觀,純白大理石砌建而成的主體建筑令人心醉神迷,陵寢以寶石鑲嵌,圖案細致,絢麗奪目、美麗無比,令人叫絕.成為世界八大奇跡之一.問題呈現(xiàn)傳說陵寢中有一個三角形圖案,以相同大
2025-08-04 18:20
【總結】第一篇:說課—《等差數(shù)列前n項和的公式》 演講稿工作總結調(diào)研報告講話稿事跡材料心得體會策劃方案 說課—《等差數(shù)列前n項和的公式》 自己收藏的覺得很有用故上傳到百度與大家一起分享! 說課-《等差...
2025-10-16 12:12
【總結】多媒體教學課件引入新課1新課2例題練習結束封面復習數(shù)列{an}前項n和的定義:叫做數(shù)列的前n項和。??naSn=a1+a2+a3+…+an-2+an-1+an?等差數(shù)列:?公差:?通項公式:?
2024-11-11 21:08
【總結】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問題在很多情形下,就是對數(shù)列通項公式的求解。特別是在一些綜合性比較強的數(shù)列問題中,數(shù)列通項公式的求解問題往往是解決數(shù)列難題的瓶頸。本文總結出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,,求。解:由條件知:分別令,代入上式得個等式累加之,即
2025-04-07 23:13
【總結】1求數(shù)列通項公式的方法一、知識復習1、通項公式:2、等差數(shù)列的通項公式:推導方法:3、等比數(shù)列的通項公式:推導方法:二、求數(shù)列的通項公式方法總結(一)觀察歸納法:通過觀察尋求na與n的關系(1)5,55,555,5555,(2)149161,2,
2025-10-12 07:00
【總結】等差數(shù)列的前n項和高一數(shù)學必修五第二章《數(shù)列》復習鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2025-08-01 13:48
【總結】(理解等差數(shù)列的概念/掌握等差數(shù)列的通項公式與前n項和公式/了解等差數(shù)列與一次函數(shù)的關系)第五單元數(shù)列等差數(shù)列及其前n項和1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于常數(shù),這個數(shù)列就叫做等差數(shù)列(arithmeticsequence),這個常數(shù)就叫做等差數(shù)列
2025-05-12 17:18
【總結】專題二:數(shù)列前n項和的求法一、倒序相加法求數(shù)列的前n項和如果一個數(shù)列{an},與首末項等距的兩項之和等于首末兩項之和,可采用把正著寫與倒著寫的兩個和式相加,就得到一個常數(shù)列的和,這一求和方法稱為倒序相加法。例如:等差數(shù)列前n項和公式的推導,用的就是“倒序相加法”。例1:設等差數(shù)列{an},公差為d,求證:{an}的前n項和Sn=n(a1+an)/2
2025-07-23 16:02
【總結】數(shù)列前n項和的求法總結核心提示:求數(shù)列的前n項和要借助于通項公式,即先有通項公式,再在分析數(shù)列通項公式的基礎上,或分解為基本數(shù)列求和,或轉(zhuǎn)化為基本數(shù)列求和。當遇到具體問題時,要注意觀察數(shù)列的特點和規(guī)律,找到適合的方法解題。一.公式法(1)等差數(shù)列前n項和:Sn=n(a1+an)2=na1+n(n+1)2d(2)等比數(shù)列前n項和:q=1時,Sn=na1;
2025-06-18 03:23
【總結】等差數(shù)列的前n項和一、數(shù)列前n項和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a1+a2+a3+…+an叫做數(shù)列{an}的前n項和,記作Sn.二、問題A?如圖,建筑工地上一堆圓木,從上到下每層的數(shù)目分別為1,2,3,……,10.問共有多少根
2025-10-07 20:23
【總結】等比數(shù)列的前n項和第1課時一、新課導入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2025-08-16 01:37