【總結(jié)】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2024-08-13 10:15
【總結(jié)】數(shù)列通項的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-11 08:49
【總結(jié)】數(shù)列通項的求法高三備課組求數(shù)列的通項方法1、由等差,等比定義,寫出通項公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-09 08:47
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對獨立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識主要涉及等差、等比數(shù)列的通項公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競賽和高考中.
2025-01-06 06:52
【總結(jié)】高考數(shù)列通項公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項公式的方法……………………………………………………………12求通項公式方法選擇策略…………………………………………………123求通項公式注意的問題………………………………………………………13參考文獻…………………………………………………………………
2025-04-17 13:06
【總結(jié)】 數(shù)列通項公式的九種求法 一、公式法 例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差的等差數(shù)列,由等差數(shù)列的通項公式,得,所以數(shù)列的通項公式為。 ...
2025-04-03 04:27
【總結(jié)】數(shù)列通項的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項往往是解題的突破口、關(guān)鍵點。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項之間的結(jié)構(gòu),縱向看各項與項數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】求數(shù)列通項公式專題練習(xí)1、設(shè)是等差數(shù)列的前項和,已知與的等差中項是1,而是與的等比中項,求數(shù)列的通項公式2、已知數(shù)列中,,前項和與的關(guān)系是,試求通項公式。3、已知數(shù)列中,,前項和與通項滿足,求通項的表達式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達式。
2025-03-25 02:52
【總結(jié)】用不動點法求遞推數(shù)列(a2+c2≠0)的通項1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2025-06-25 01:55
【總結(jié)】專題數(shù)列通項公式的求法一、定義法直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.例1.等差數(shù)列是遞增數(shù)列,前n項和為,且成等比數(shù)列,.求數(shù)列的通項公式解:設(shè)數(shù)列公差為∵成等比數(shù)列,∴,即,得∵,∴……………………①∵∴…………②由①②得:,∴點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公
2025-03-25 02:53
【總結(jié)】1求數(shù)列通項公式方法總結(jié)一、觀察法利用等差數(shù)列、等比數(shù)列的通項公式求解。例1.寫出下列數(shù)列的通項公式(1)?,3231,1615,87,43na=(2)?,71,51,31,1??na=(3)
2024-10-21 19:02
【總結(jié)】等差數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2024-08-25 02:28
【總結(jié)】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
【總結(jié)】數(shù)列的通項公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項起,它的每一項與前一項的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-10 00:27