freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大學(xué)物理答案(上)-資料下載頁

2025-06-18 06:29本頁面
  

【正文】  該題中雖施以“恒力”,但是,作用在物體上的力的方向在不斷變化.需按功的矢量定義式來求解.解 取圖示坐標,繩索拉力對物體所作的功為319 分析 本題是一維變力作功問題,仍需按功的定義式來求解.關(guān)鍵在于尋找力函數(shù)F =F(x).根據(jù)運動學(xué)關(guān)系,可將已知力與速度的函數(shù)關(guān)系F(v) =kv2 變換到F(t),進一步按x =ct3 的關(guān)系把F(t)轉(zhuǎn)換為F(x),這樣,就可按功的定義式求解.解 由運動學(xué)方程x =ct3 ,可得物體的速度按題意及上述關(guān)系,物體所受阻力的大小為則阻力的功為320 分析 由于水桶在勻速上提過程中,拉力必須始終與水桶重力相平衡.水桶重力因漏水而隨提升高度而變,因此,拉力作功實為變力作功.由于拉力作功也就是克服重力的功,因此,只要能寫出重力隨高度變化的關(guān)系,拉力作功即可題3 20 圖求出.解 水桶在勻速上提過程中,a =0,拉力與水桶重力平衡,有F +P =0在圖示所取坐標下,水桶重力隨位置的變化關(guān)系為P =mg αgy其中α=0.2 kg/m,人對水桶的拉力的功為321 分析 (1) 在計算功時,首先應(yīng)明確是什么力作功.小球擺動過程中同時受到重力和張力作用.重力是保守力,根據(jù)小球下落的距離,它的功很易求得;至于張力雖是一變力,但是,它的方向始終與小球運動方向垂直,根據(jù)功的矢量式,即能得出結(jié)果來.(2) 在計算功的基礎(chǔ)上,由動能定理直接能求出動能和速率.(3) 在求最低點的張力時,可根據(jù)小球作圓周運動時的向心加速度由重力和張力提供來確定.解 (1) 如圖所示,重力對小球所作的功只與始末位置有關(guān),即在小球擺動過程中,張力FT 的方向總是與運動方向垂直,所以,張力的功 (2) 根據(jù)動能定理,小球擺動過程中,其動能的增量是由于重力對它作功的結(jié)果.初始時動能為零,因而,在最低位置時的動能為 小球在最低位置的速率為 (3) 當(dāng)小球在最低位置時,由牛頓定律可得 322 分析 質(zhì)點在運動過程中速度的減緩,意味著其動能減少;而減少的這部分動能則消耗在運動中克服摩擦力作功上.由此,可依據(jù)動能定理列式解之.解 (1) 摩擦力作功為 (1)(2) 由于摩擦力是一恒力,且Ff =μmg,故有 (2)由式(1)、(2)可得動摩擦因數(shù)為(3) 由于一周中損失的動能為,則在靜止前可運行的圈數(shù)為圈323 分析 運用守恒定律求解是解決力學(xué)問題最簡捷的途徑之一.因為它與過程的細節(jié)無關(guān),也常常與特定力的細節(jié)無關(guān).“守恒”則意味著在條件滿足的前提下,過程中任何時刻守恒量不變.在具體應(yīng)用時,必須恰當(dāng)?shù)剡x取研究對象(系統(tǒng)),注意守恒定律成立的條件.該題可用機械能守恒定律來解決.選取兩塊板、彈簧和地球為系統(tǒng),該系統(tǒng)在外界所施壓力撤除后(取作狀態(tài)1),直到B 板剛被提起(取作狀態(tài)2),在這一過程中,系統(tǒng)不受外力作用,而內(nèi)力中又只有保守力(重力和彈力)作功,支持力不作功,因此,滿足機械能守恒的條件.只需取狀態(tài)1 和狀態(tài)2,運用機械能守恒定律列出方程,并結(jié)合這兩狀態(tài)下受力的平衡,便可將所需壓力求出.解 選取如圖(b)所示坐標,取原點O處為重力勢能和彈性勢能零點.作各狀態(tài)下物體的受力圖.對A 板而言,當(dāng)施以外力F 時,根據(jù)受力平衡有F1 =P1 +F (1)當(dāng)外力撤除后,按分析中所選的系統(tǒng),由機械能守恒定律可得式中y1 、y2 為M、N 兩點對原點O 的位移.因為F1 =ky1 ,F2 =ky2 及P1 =m1g,上式可寫為F1 F2 =2P1 (2)由式(1)、(2)可得F =P1 +F2 (3)當(dāng)A 板跳到N 點時,B 板剛被提起,此時彈性力F′2 =P2 ,且F2 =F′2 .由式(3)可得F =P1 +P2 =(m1 +m2 )g應(yīng)注意,勢能的零點位置是可以任意選取的.為計算方便起見,通常取彈簧原長時的彈性勢能為零點,也同時為重力勢能的零點.324 分析 礦車在下滑和返回的全過程中受到重力、彈力、阻力和支持力作用.若取礦車、地球和彈簧為系統(tǒng),支持力不作功,重力、彈力為保守力,而阻力為非保守力.礦車在下滑和上行兩過程中,存在非保守力作功,系統(tǒng)不滿足機械能守恒的條件,因此,可應(yīng)用功能原理去求解.在確定重力勢能、彈性勢能時,應(yīng)注意勢能零點的選取,常常選取彈簧原長時的位置為重力勢能、彈性勢能共同的零點,這樣做對解題比較方便.解 取沿斜面向上為x 軸正方向.彈簧被壓縮到最大形變時彈簧上端為坐標原點O.礦車在下滑和上行的全過程中,按題意,摩擦力所作的功為Wf =( +′g)(l +x) (1)式中m′和m 分別為礦車滿載和空載時的質(zhì)量,x 為彈簧最大被壓縮量.根據(jù)功能原理,在礦車運動的全過程中,摩擦力所作的功應(yīng)等于系統(tǒng)機械能增量的負值,故有Wf =ΔE =(ΔEP+ΔEk )由于礦車返回原位時速度為零,故ΔEk=0;而ΔEP=(m m′) g(l +x) sinα,故有Wf =(m m′) g(l +x) sinα (2)由式(1)、(2)可解得325 分析 由于兩次錘擊的條件相同,錘擊后釘子獲得的速度也相同,所具有的初動能也相同.釘子釘入木板是將釘子的動能用于克服阻力作功,由功能原理可知釘子兩次所作的功相等.由于阻力與進入木板的深度成正比,按變力的功的定義得兩次功的表達式,并由功相等的關(guān)系即可求解.解 因阻力與深度成正比,則有F=kx(k 為阻力系數(shù)).現(xiàn)令x0= 10 2 m,第二次釘入的深度為Δx,由于釘子兩次所作功相等,可得 Δx= 10 2 m326 分析 根據(jù)勢能和動能的定義,只需知道衛(wèi)星的所在位置和繞地球運動的速率,其勢能和動能即可算出.由于衛(wèi)星在地球引力作用下作圓周運動,由此可算得衛(wèi)星繞地球運動的速率和動能.由于衛(wèi)星的引力勢能是屬于系統(tǒng)(衛(wèi)星和地球)的,要確定特定位置的勢能時,必須規(guī)定勢能的零點,通常取衛(wèi)星與地球相距無限遠時的勢能為零.這樣,衛(wèi)星在特定位置的勢能也就能確定了.至于衛(wèi)星的機械能則是動能和勢能的總和.解 (1) 衛(wèi)星與地球之間的萬有引力提供衛(wèi)星作圓周運動的向心力,由牛頓定律可得 則 (2) 取衛(wèi)星與地球相距無限遠(r→∞)時的勢能為零,則處在軌道上的衛(wèi)星所具有的勢能為(3) 衛(wèi)星的機械能為327 分析 取冰塊、屋面和地球為系統(tǒng),由于屋面對冰塊的支持力FN 始終與冰塊運動的方向垂直,故支持力不作功;而重力P又是保守內(nèi)力,所以,系統(tǒng)的機械能守恒.但是,僅有一個機械能守恒方程不能解出速度和位置兩個物理量;因此,還需設(shè)法根據(jù)冰塊在脫離屋面時支持力為零這一條件,由牛頓定律列出冰塊沿徑向的動力學(xué)方程.求解上述兩方程即可得出結(jié)果.解 由系統(tǒng)的機械能守恒,有 (1)根據(jù)牛頓定律,冰塊沿徑向的動力學(xué)方程為 (2)冰塊脫離球面時,支持力FN =0,由式(1)、(2)可得冰塊的角位置冰塊此時的速率為v 的方向與重力P 方向的夾角為 α=90176。θ =176。328 分析 若取小球、彈簧和地球為系統(tǒng),小球在被釋放后的運動過程中,只有重力和彈力這兩個保守內(nèi)力作功,軌道對球的支持力不作功,因此,在運動的過程中,系統(tǒng)的機械能守恒.運用守恒定律解題時,關(guān)鍵在于選好系統(tǒng)的初態(tài)和終態(tài).為獲取本題所求的結(jié)果,初態(tài)選在壓縮彈簧剛被釋放時刻,這樣,可使彈簧的勁度系數(shù)與初態(tài)相聯(lián)系;而終態(tài)則取在小球剛好能通過半圓弧時的最高點C 處,因為這時小球的速率正處于一種臨界狀態(tài),若大于、等于此速率時,小球定能沿軌道繼續(xù)向前運動;小于此速率時,小球?qū)⒚撾x軌道拋出.該速率則可根據(jù)重力提供圓弧運動中所需的向心力,由牛頓定律求出.這樣,再由系統(tǒng)的機械能守恒定律即可解出該彈簧勁度系數(shù)的最小值.解 小球要剛好通過最高點C 時,軌道對小球支持力FN =0,因此,有 (1)取小球開始時所在位置A 為重力勢能的零點,由系統(tǒng)的機械能守恒定律,有 (2) 由式(1)、(2) 可得 329 分析 這也是一種碰撞問題.碰撞的全過程是指小球剛與彈簧接觸直至彈簧被壓縮到最大,小球與靶剛好到達共同速度為止,在這過程中,小球和靶組成的系統(tǒng)在水平方向不受外力作用,外力的沖量為零,因此,在此方向動量守恒.但是,僅靠動量守恒定律還不能求出結(jié)果來.又考慮到無外力對系統(tǒng)作功,系統(tǒng)無非保守內(nèi)力作功,故系統(tǒng)的機械能也守恒.應(yīng)用上述兩個守恒定律,并考慮到球與靶具有相同速度時,彈簧被壓縮量最大這一條件,即可求解.應(yīng)用守恒定律求解,可免除碰撞中的許多細節(jié)問題.解 設(shè)彈簧的最大壓縮量為x0 .小球與靶共同運動的速度為v1 .由動量守恒定律,有 (1)又由機械能守恒定律,有 (2)由式(1)、(2)可得330 分析 該題可分兩個過程分析.首先是彈丸穿越擺錘的過程.就彈丸與擺錘所組成的系統(tǒng)而言,由于穿越過程的時間很短,重力和的張力在水平方向的沖量遠小于沖擊力的沖量,因此,可認為系統(tǒng)在水平方向不受外力的沖量作用,系統(tǒng)在該方向上滿足動量守恒.?dāng)[錘在碰撞中獲得了一定的速度,因而具有一定的動能,為使擺錘能在垂直平面內(nèi)作圓周運動,必須使擺錘在最高點處有確定的速率,該速率可由其本身的重力提供圓周運動所需的向心力來確定;與此同時,擺錘在作圓周運動過程中,擺錘與地球組成的系統(tǒng)滿足機械能守恒定律,根據(jù)兩守恒定律即可解出結(jié)果.解 由水平方向的動量守恒定律,有 (1)為使擺錘恰好能在垂直平面內(nèi)作圓周運動,在最高點時,擺線中的張力FT=0,則 (2)式中v′h 為擺錘在圓周最高點的運動速率.又擺錘在垂直平面內(nèi)作圓周運動的過程中,滿足機械能守恒定律,故有 (3)解上述三個方程,可得彈丸所需速率的最小值為331 分析 對于粒子的對心彈性碰撞問題,同樣可利用系統(tǒng)(電子和氫原子)在碰撞過程中所遵循的動量守恒和機械能守恒來解決.本題所求電子傳遞給氫原子的能量的百分數(shù),即氫原子動能與電子動能之比.根據(jù)動能的定義,有,而氫原子與電子的質(zhì)量比m′/m 是已知的,它們的速率比可應(yīng)用上述兩守恒定律求得, 即可求出.解 以EH 表示氫原子被碰撞后的動能, Ee 表示電子的初動能,則 (1)由于粒子作對心彈性碰撞,在碰撞過程中系統(tǒng)同時滿足動量守恒和機械能守恒定律,故有 (2) (3)由題意知m′/m=1 840,解上述三式可得332 分析 這是粒子系統(tǒng)的二維彈性碰撞問題.這類問題通常采用守恒定律來解決.因為粒子系統(tǒng)在碰撞的平面內(nèi)不受外力作用,同時,碰撞又是完全彈性的,故系統(tǒng)同時滿足動量守恒和機械能守恒.由兩守恒定律方程即可解得結(jié)果.解 取如圖所示的坐標,由于粒子系統(tǒng)屬于斜碰,在碰撞平面內(nèi)根據(jù)系統(tǒng)動量守恒定律可取兩個分量式,有 (1) (2)又由機械能守恒定律,有 (3)解式(1)、(2)、(3)可得碰撞后B 粒子的速率為各粒子相對原粒子方向的偏角分別為333 分析 該題可分兩個階段來討論,首先是子彈和物塊的撞擊過程,然后是物塊(包含子彈)沿斜面向上的滑動過程.在撞擊過程中,對物塊和子彈組成的系統(tǒng)而言,由于撞擊前后的總動量明顯是不同的,因此,撞擊過程中動量不守恒.應(yīng)該注意,不是任何碰撞過程中動量都是守恒的.但是,若取沿斜面的方向,因撞擊力(屬于內(nèi)力)遠大于子彈的重力P1 和物塊的重力P2 在斜面的方向上的分力以及物塊所受的摩擦力Ff ,在該方向上動量守恒,由此可得到物塊被撞擊后的速度.在物塊沿斜面上滑的過程中,為解題方便,可重新選擇系統(tǒng)(即取子彈、物塊和地球為系統(tǒng)),此系統(tǒng)不受外力作用,而非保守內(nèi)力中僅摩擦力作功,根據(jù)系統(tǒng)的功能原理,可解得最終的結(jié)果.解 在子彈與物塊的撞擊過程中,在沿斜面的方向上,根據(jù)動量守恒有 (1)在物塊上滑的過程中,若令物塊剛滑出斜面頂端時的速度為v2 ,并取A 點的重力勢能為零.由系統(tǒng)的功能原理可得 (2)由式(1)、(2)可得334 分析 由于桌面無摩擦,容器可以在水平桌面上滑動,當(dāng)小球沿容器內(nèi)壁下滑時,容器在桌面上也要發(fā)生移動.將小球與容器視為系統(tǒng),該系統(tǒng)在運動過程中沿水平桌面方向不受外力作用,系統(tǒng)在該方向上的動量守恒;若將小球、容器與地球視為系統(tǒng),因系統(tǒng)無外力作用,而內(nèi)力中重力是保守力,而支持力不作功,系統(tǒng)的機械能守恒.由兩個守恒定律可解得小球和容器在慣性系中的速度.由于相對運動的存在,小球相對容器運動的軌跡是圓,而相對桌面運動的軌跡就不再是圓了,因此,在運用曲線運動中的法向動力學(xué)方程求解小球受力時,必須注意參考系的選擇.若取容器為參考系(非慣性系),小球在此參考系中的軌跡仍是容器圓弧,其法向加速度可由此刻的速度(相對于容器速度)求得.在分析小球受力時,除重力和支持力外,還必須計及它所受的慣性力.小球位于容器的底部這一特殊位置時,容器的加速度為零,慣性力也為零.這樣,由法向動力學(xué)方程求解小球所受的支持力就很容易了.若仍取地面為參考系(慣性系),雖然無需考慮慣性力,但是因小球的軌跡方程比較復(fù)雜,其曲率半徑及法向加速度難以確定,使求解較為困難.解 根據(jù)水平方向動量守恒定律以及小球在下滑過程中機械能守恒定律可分別得 (1) (2)式中vm 、vm′分別表示小球、容器相對桌面的速度.由式(1)、(2)可得小球到達容器底部時小球、容器的速度大小分別為由于小球相對地面運動的軌跡比較復(fù)雜,為此,可改為以容器
點擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1