【總結(jié)】人民教育出版社高中《數(shù)學(xué)》第一冊(cè)(上)第三章等比數(shù)列前n項(xiàng)和公式教師:武占斌山西大同市第二中學(xué)校說(shuō)課的四個(gè)環(huán)節(jié)?教材分析?教法選取?學(xué)法指導(dǎo)?教學(xué)程序一、教材分析1、教材背景分析:等比數(shù)列的前n項(xiàng)和等差數(shù)列等比數(shù)列通項(xiàng)、遞推公式求和數(shù)列
2025-05-10 08:13
【總結(jié)】等差數(shù)列前n項(xiàng)和公式復(fù)習(xí)回顧(1)等差數(shù)列的通項(xiàng)公式:已知首項(xiàng)a1和公差d,則有:an=a1+(n-1)d已知第m項(xiàng)am和公差d,則有:an=am+(n-m)d,d=(an-am)/(n-m)
2025-08-15 20:34
【總結(jié)】等差數(shù)列的前n項(xiàng)和公式一新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個(gè)V形架上共放著多少支鉛筆?播放課件一個(gè)堆放小球的V形架問(wèn)題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,
2025-09-30 17:22
【總結(jié)】復(fù)習(xí)回顧通項(xiàng)公式:等差數(shù)列中:前n項(xiàng)和公式:例題講解例1.求集合中元素的個(gè)數(shù),并求這些元素的和。解:代公式可得或由,即或答:集合M中共有14個(gè)元素,它們的和等于7
2024-11-09 05:34
【總結(jié)】《等差數(shù)列前n項(xiàng)和的公式》說(shuō)課稿教學(xué)目標(biāo):A、知識(shí)目標(biāo):掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。B、能力目標(biāo):(1)通過(guò)公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過(guò)程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。(2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過(guò)觀察、嘗試、分析、類比的方
2025-08-26 11:26
【總結(jié)】1求數(shù)列通項(xiàng)公式的方法一、知識(shí)復(fù)習(xí)1、通項(xiàng)公式:2、等差數(shù)列的通項(xiàng)公式:推導(dǎo)方法:3、等比數(shù)列的通項(xiàng)公式:推導(dǎo)方法:二、求數(shù)列的通項(xiàng)公式方法總結(jié)(一)觀察歸納法:通過(guò)觀察尋求na與n的關(guān)系(1)5,55,555,5555,(2)149161,2,
2025-10-12 07:00
【總結(jié)】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見(jiàn)遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-04-17 00:58
【總結(jié)】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時(shí)感到很困難。同時(shí),數(shù)列題目種類繁多,很難歸類。為了便于研究數(shù)列問(wèn)題,找出其中某些常見(jiàn)數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見(jiàn)的數(shù)列通項(xiàng)公式的求法作以下歸類。.一、作差求和法m例1在數(shù)列{}中,,,求通項(xiàng)公式.解:原遞推式可化為:則,……,逐項(xiàng)相加
2025-08-23 21:37
【總結(jié)】數(shù)列通項(xiàng)公式的十種求法一、公式法二、累加法例1已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。例2已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()三、累乘法例3已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。()評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例4已知數(shù)列滿足,求的通項(xiàng)公式。()評(píng)
2025-06-26 05:34
【總結(jié)】......1、公式法:等差數(shù)列、等比數(shù)列的通項(xiàng)公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關(guān)系,可采用求等差、等比數(shù)列的通項(xiàng)公式的求法,確定數(shù)列的通項(xiàng)。2、非等差、等比數(shù)列的通項(xiàng)公式的求法。(1)觀察法:通過(guò)觀察數(shù)列中的
2025-06-25 02:18
【總結(jié)】復(fù)習(xí):等比數(shù)列{an}an+1an=q(定值)(1)等比數(shù)列:(2)通項(xiàng)公式:an=a1?qn-1(4)重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)成等比數(shù)列(3)bGa,,)0(,2??ababG
【總結(jié)】欄目導(dǎo)航課前預(yù)習(xí)課堂探究點(diǎn)擊進(jìn)入課后作業(yè)
2025-08-05 11:00
【總結(jié)】第一篇:說(shuō)課—《等差數(shù)列前n項(xiàng)和的公式》 演講稿工作總結(jié)調(diào)研報(bào)告講話稿事跡材料心得體會(huì)策劃方案 說(shuō)課—《等差數(shù)列前n項(xiàng)和的公式》 自己收藏的覺(jué)得很有用故上傳到百度與大家一起分享! 說(shuō)課-《等差...
2024-10-25 12:12
【總結(jié)】由此題,如何通過(guò)數(shù)列前n項(xiàng)和來(lái)求數(shù)列通項(xiàng)公式???首項(xiàng)與公差各是多少?數(shù)列嗎?如果是,它的并判斷這個(gè)數(shù)列是等差,求這個(gè)數(shù)列的通項(xiàng)公式項(xiàng)和為的前:已知數(shù)列例,1212nnSnann??)1(?????????????n1na2a1a1nSna1na2a1anS??與解:根據(jù)212122122)]1()1[()(1???????
2024-11-10 00:24
【總結(jié)】數(shù)列通項(xiàng)公式幾種求法的文獻(xiàn)綜述摘要;從近幾年高考的內(nèi)容來(lái)看,數(shù)列是高考的重點(diǎn)內(nèi)容,數(shù)列在實(shí)踐和理論中均有較高的價(jià)值,而數(shù)列的列通項(xiàng)公式是數(shù)列的核心內(nèi)容之一。本文從2021-2021年高考求數(shù)列通項(xiàng)公式有關(guān)資料查閱,對(duì)數(shù)列通項(xiàng)公式的常用方法做一個(gè)文獻(xiàn)綜述。關(guān)鍵詞;數(shù)列、通項(xiàng)公式、求法、綜述.高中教材中的數(shù)列有利于發(fā)展學(xué)生的發(fā)散思維能力
2025-06-02 22:50